Skip navigation
User training | Reference and search service

Library catalog

EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/21056
Full metadata record
acessibilidade
DC FieldValueLanguage
dc.contributor.authorBoné, J.-
dc.contributor.authorDias, M.-
dc.contributor.authorFerreira, J. C.-
dc.contributor.authorRibeiro, R.-
dc.date.accessioned2021-01-04T11:17:10Z-
dc.date.available2021-01-04T11:17:10Z-
dc.date.issued2020-
dc.identifier.issn2076-3417-
dc.identifier.urihttp://hdl.handle.net/10071/21056-
dc.description.abstractThis research is aimed at creating and presenting DisKnow, a data extraction system with the capability of filtering and abstracting tweets, to improve community resilience and decision-making in disaster scenarios. Nowadays most people act as human sensors, exposing detailed information regarding occurring disasters, in social media. Through a pipeline of natural language processing (NLP) tools for text processing, convolutional neural networks (CNNs) for classifying and extracting disasters, and knowledge graphs (KG) for presenting connected insights, it is possible to generate real-time visual information about such disasters and affected stakeholders, to better the crisis management process, by disseminating such information to both relevant authorities and population alike. DisKnow has proved to be on par with the state-of-the-art Disaster Extraction systems, and it contributes with a way to easily manage and present such happenings.eng
dc.language.isoeng-
dc.publisherMDPI AG-
dc.relationUIDB/50021/2020-
dc.relationUIDB/04466/2020-
dc.rightsopenAccess-
dc.subjectDisaster managementeng
dc.subjectNatural language processingeng
dc.subjectInformation extractioneng
dc.subjectCrowdsourcingeng
dc.subjectAutomatic knowledge base constructioneng
dc.subjectKnowledge graphseng
dc.titleDisKnow: a social-driven disaster support knowledge extraction systemeng
dc.typearticle-
dc.peerreviewedyes-
dc.journalApplied Sciences-
dc.volume10-
dc.number17-
degois.publication.issue17-
degois.publication.titleDisKnow: a social-driven disaster support knowledge extraction systemeng
dc.date.updated2021-01-04T11:12:37Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.3390/app10176083-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências Físicaspor
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências Químicaspor
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Outras Ciências Naturaispor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Civilpor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Químicapor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiaispor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-74180-
iscte.alternateIdentifiers.wosWOS:000569973900001-
iscte.alternateIdentifiers.scopus2-s2.0-85090366803-
Appears in Collections:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
acessibilidade
File Description SizeFormat 
applsci-10-06083 (1).pdfVersão Editora606.28 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.