Skip navigation
User training | Reference and search service

Library catalog

Content aggregators
Please use this identifier to cite or link to this item:

Title: Big data in hotel revenue management: exploring cancellation drivers to gain insights into booking cancellation behavior
Authors: António, N.
de Almeida, A.
Nunes, L.
Keywords: Big data
Machine learning
Revenue management
Issue Date: 2019
Publisher: SAGE
Abstract: n the hospitality industry, demand forecast accuracy is highly impacted by booking cancellations, which makes demand-management decisions difficult and risky. In attempting to minimize losses, hotels tend to implement restrictive cancellation policies and employ overbooking tactics, which, in turn, reduce the number of bookings and reduce revenue. To tackle the uncertainty arising from booking cancellations, we combined the data from eight hotels’ property management systems with data from several sources (weather, holidays, events, social reputation, and online prices/inventory) and machine learning interpretable algorithms to develop booking cancellation prediction models for the hotels. In a real production environment, improvement of the forecast accuracy due to the use of these models could enable hoteliers to decrease the number of cancellations, thus, increasing confidence in demand-management decisions. Moreover, this work shows that improvement of the demand forecast would allow hoteliers to better understand their net demand, that is, current demand minus predicted cancellations. Simultaneously, by focusing not only on forecast accuracy but also on its explicability, this work illustrates one other advantage of the application of these types of techniques in forecasting: the interpretation of the predictions of the model. By exposing cancellation drivers, models help hoteliers to better understand booking cancellation patterns and enable the adjustment of a hotel’s cancellation policies and overbooking tactics according to the characteristics of its bookings.
Peer reviewed: yes
DOI: 10.1177/1938965519851466
ISSN: 1938-9655
Appears in Collections:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica
IT-RI - Artigo em revista internacional com arbitragem científica

Files in This Item:
File Description SizeFormat 
BigDataCancellationPrediction_posprint.pdfPós-print842.72 kBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.