Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/17185
Registo completo
Campo DCValorIdioma
dc.contributor.authorYao, H.-
dc.contributor.authorFu, X.-
dc.contributor.authorYang, Y.-
dc.contributor.authorPostolache, O.-
dc.date.accessioned2019-02-07T14:47:51Z-
dc.date.available2019-02-07T14:47:51Z-
dc.date.issued2018-
dc.identifier.issn2076-3417-
dc.identifier.urihttp://hdl.handle.net/10071/17185-
dc.description.abstractOutlier detection has attracted a wide range of attention for its broad applications, such as fault diagnosis and intrusion detection, among which the outlier analysis in data streams with high uncertainty and infinity is more challenging. Recent major work of outlier detection has focused on principle research of the local outlier factor, and there are few studies on incremental updating strategies, which are vital to outlier detection in data streams. In this paper, a novel incremental local outlier detection approach is introduced to dynamically evaluate the local outlier in the data stream. An extended local neighborhood consisting of k nearest neighbors, reverse nearest neighbors and shared nearest neighbors is estimated for each data. The theoretical evidence of algorithm complexity for the insertion of new data and deletion of old data in the composite neighborhood shows that the amount of affected data in the incremental calculation is finite. Finally, experiments performed on both synthetic and real datasets verify its scalability and outlier detection accuracy. All results show that the proposed approach has comparable performance with state-of-the-art k nearest neighbor-based methodseng
dc.language.isoeng-
dc.publisherMDPI-
dc.relation17595810300-
dc.relationUID/EEA/50008/2013-
dc.rightsopenAccess-
dc.subjectIncremental algorithmeng
dc.subjectK nearest neighboreng
dc.subjectLocal outlier factoreng
dc.subjectOutlier detectioneng
dc.titleAn incremental local outlier detection method in the Data Streameng
dc.typearticle-
dc.event.date2019-
dc.peerreviewedyes-
dc.journalApplied Science-
dc.volume8-
dc.number8-
degois.publication.issue8-
degois.publication.titleAn incremental local outlier detection method in the Data Streameng
dc.date.updated2019-02-07T14:33:10Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.3390/app8081248-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Terra e do Ambientepor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiaispor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-53603-
iscte.alternateIdentifiers.wosWOS:000442864900038-
iscte.alternateIdentifiers.scopus2-s2.0-85051056889-
Aparece nas coleções:IT-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
artigo applied sciences Yao.pdfVersão Editora5,8 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.