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Abstract: Outlier detection has attracted a wide range of attention for its broad applications, such as
fault diagnosis and intrusion detection, among which the outlier analysis in data streams with high
uncertainty and infinity is more challenging. Recent major work of outlier detection has focused
on principle research of the local outlier factor, and there are few studies on incremental updating
strategies, which are vital to outlier detection in data streams. In this paper, a novel incremental
local outlier detection approach is introduced to dynamically evaluate the local outlier in the data
stream. An extended local neighborhood consisting of k nearest neighbors, reverse nearest neighbors
and shared nearest neighbors is estimated for each data. The theoretical evidence of algorithm
complexity for the insertion of new data and deletion of old data in the composite neighborhood
shows that the amount of affected data in the incremental calculation is finite. Finally, experiments
performed on both synthetic and real datasets verify its scalability and outlier detection accuracy.
All results show that the proposed approach has comparable performance with state-of-the-art k
nearest neighbor-based methods.
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1. Introduction

Our world now creates a huge amount of data, and the amount of new information will continue
to increase at an explosive growth trend in the foreseeable future, which has overtaken storage and
processing capabilities. A considerable portion of these data are generated continuously as data
streams from different applications, for example, structural health monitoring, fault detection in
industry, and invasion and fraud detection for Internet data. Valuable information from data mining
of these data streams can help to reduce the system burden of data storage and operation [1].

As an important research direction in the field of data stream mining, outlier or anomaly detection
usually involves the discovery of observations that deviate so much from other observations as to
arouse suspicions that they were generated by a different mechanism [2]. Error and event are the
common compositions of outliers, and both are rare and concerning, such as over-range records
in monitoring systems and abnormal behavior in credit card fraud detection. The data stream has
dynamic changes and infinite data volumes, and may have multiple data dimensions and large
amounts of data traffic, which makes outlier detection in data streams a tricky challenge, and a
promising research direction, especially for applications with limited computing capabilities, storage
space, and energy [3,4].

As a typical case, wireless sensor networks with limited calculation and storage capacity are
widely involved in monitoring tasks for equipment, environment, and so forth, for their cost and
deployment advantages. However, environmental interference and unexpected events on monitored
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object can inevitably introduce outliers, which will cause wrong judgments and responses from the
subsequent control systems. Some methods have been proposed to solve outlier detection problems
in data streams, which have laid the basic detection principle and have explored some ways to
improve the algorithm efficiency and accuracy [5]. Nevertheless, some core algorithms, for example,
more reasonable local neighborhood description and corresponding efficient update strategies for
the detection model, still need to be improved in order to reduce detection errors and omissions in
the existing methods. As an improvement to some existing work, the contributions of this paper are
expressed by:

• A proposal for a new incremental local outlier detection method for data streams, in which an
incremental update strategy of the composite nearest neighborhood, including the k-nearest
neighbor, reverse k-nearest neighbor, and shared k-nearest neighbors, is developed.

• Theoretical analysis for the proposed outlier detection approach is provided, which involves
algorithm complexity, scalability, and parameter selection.

• Performance improvement of the proposed approach, compared to the k-nearest neighbor based
method, is also demonstrated from extensive experiments on both synthetic and real-life data sets.

This paper is organized as follows: In Section 2.1, the related work of outlier detection in data
streams is presented, and the shortcomings of existing work with only kNN (k nearest neighbor)
methods to describe neighborhood features and the importance of incremental update strategies for
neighborhood are indicated. Then, distance-based local density and outlier factor estimation are gave
in Section 2.2, and the novel incremental update strategy of the composite nearest neighborhood-based
outlier detection method is presented in Section 2.3. In Section 3, the experimental analysis and results
on both synthetic and real life data sets are presented, which show the efficiency, scalability, and outlier
detection performance of the new method compared with the state-of-the-art kNN-based approach.
Finally, the discussion and conclusion are summarized in Section 4.

2. Materials and Methods

2.1. Related Work

Outlier detection methods for different applications are reported in the literature, and can be
categorized as global and local approaches, i.e., the decision on the outlierness of data is based on
the global (all) database or only on a local (partial) selection of data objects [6]. It is difficult and
costly to store all stream data in collection terminal. Besides, unlabeled and unpredictable features are
usual in data streams. All of these make the unsupervised local outlier detection strategies necessary
for data streams. Some classic categories of outlier detection strategies have been proposed for data
streams [5,7,8]: distribution-based, clustering-based, model-based, and distance-based approaches.

Distribution-based approaches involve learning a probabilistic model with prior knowledge of
the underlying distribution in a dataset, and usually implements statistical hypothesis validation.
Most of these statistical hypotheses assume a Gaussian distribution. In [9], time-series analysis and
geostatistics are combined for distributed and online outlier detection in wireless sensor networks,
and Gauss-distributed error is used to design the outlier detection threshold. Second-order statistical
analysis is applied on average relative densities and mean entropy values are used to differentiate
anomalies through robust and adaptive thresholds, which also depend on the Gaussian assumption [10].
The problem is that the unlabeled and unpredictable features within data streams make prior
knowledge of the underlying distribution unreliable.

Clustering-based approaches detect outliers by discovering clusters that are significantly smaller
than others [11], or by finding data that do not belong to clusters [12], which means that outlier
detection is only a by-product of the clustering results [13]. In [14], a clustering-based approach is
specifically used for outlier detection in data streams with varying arrival rates. Currently, research on
more proper clustering standards and more efficient clustering algorithms is an important research
direction [15].
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In model-based approaches, characteristics in normal behavior are summarized with predictive
models, e.g., principal component analysis and support vector machine; data that cannot be described
by these models are detected as outliers. In [16], a distributed online anomaly detection model that
measures the dissimilarity of sensor observations in the principal component space is proposed, which
can distribute the detection process over the network to minimize energy consumption, while ensuring
high detection effectiveness. The support vector machine for outlier detection is a one-class support
vector machine [17]. There are two main research directions: a hyperspherical and a hyperellipsoidal
one-class support vector machine. In the mapped high dimensional space, a hyperspherical region [18]
or hyperellipsoidal region [19] can be constructed to enclose normal data; data inside or outside the
border area should be outliers. For outlier detection in the data stream, model updates and parameter
optimization for these methods are drags on the algorithm efficiency.

Finally, distance-based approaches detect outliers by computing distances among points, and
are completely data-based methods that do not assume an underlying data distribution [20].
In distance-based local outlier detection approaches, a local density is usually calculated based on the
distance between data and its nearest neighbors, and the local outlier factor (LOF) of data is further
formed, and the degree of outlierness is described, relying on the local density. Generally, data with
high LOF and low density tend to be considered as outliers. This strategy has already had many
successful application domains [6,21]. Therefore, the evaluation methods of the local neighborhood
and LOF have been the main research directions in the last decade.

Currently, three common types of local neighborhood have been defined. The most popular one
is the kNN, which requires a user-supplied parameter, k to find the k-th nearest neighbor and to fix
the size of the neighborhood set [22]. Another one is the distance-based neighbor, which needs to
supply a unified distance for each data; for example, in a two-dimensional data set, a circle centered
at data p can be drawn with the radius of the user-setting distance, and all of the data within this
circle will form the local neighborhood of data p [23]. Unfortunately, the distance-based neighbor
approach is not applicable to process data streams, due to the common problem of non-homogeneous
data within them. Recently, the composite nearest neighborhood (CNN), including kNN, the reverse
k-nearest neighbors (RkNN), and shared k-nearest neighbors (SkNN), have been proposed to flexibly
model different local patterns of data, e.g., improving the false positive identification of outliers in the
boundary of the data set [24]. The RkNN of an object p are essentially objects that have p in their kNN,
and SkNN of object p are those objects that share one or more nearest neighbors with p.

Calculation methods for LOF have been widely studied. The LOF strategy was firstly proposed
in [20], where the local reachability density calculated in the kNN of data was used to indicate
outlierness. The kNN-weight method (kNNW) is used the sum of distances to an object’s kNN to
reduce variation in scores, and to make the score less sensitive to the change of parameter k [25]. In [24],
the distance of the k-th nearest object to the data p (abbreviated as kdist(p)) was used, and 1/kdist(p)
was used to define the density of p. Influenced outlierness (INFLO), described as the comparison
between the density of p and the average density in kNN and RkNN of p, was calculated. In the
Local Distance-based Outlier Factor (LDOF) method, the average distance dp between p and the data
within the kNN of p was calculated as the density estimation, and the comparison of dp to the average
distance between data in the kNN of p was calculated as the outlierness [26]. The local density factor
(LDF) replaces the density estimate by a variable-width Gaussian kernel density estimation (KDE) [27].
Recently, a relative density-based outlier score (RDOS) method involving the multivariate Gaussian
kernel function was introduced, and it measured the local outlierness of objects with reference to their
CNN [28].

Although many LOF methods have been proposed, few of them can be directly used in the
outlier detection of data streams for the lack of an update strategy. In literatures [7,8], incremental
LOF methods based on kNN have been proposed, which have some limitations in describing the
local characteristics of data [24]. Thus, in this paper, the incremental LOF method involving CNN
(CLOF) is focused upon. To the best of our knowledge, none of the state-of-the-art approaches are
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designed for detecting local outliers in data streams with an incremental update method based on
CNN. In a fixed sliding window with user-specified width selection, the density of data p based on
the average distance from p to its CNN is calculated, and the CLOF(p) is estimated by comparing p’s
density with the average density in its CNN area. To follow the changes of data streams, a new data
point has to be inserted into the sliding window, and an obsolete data point has to be deleted from
the sliding window. Therefore, the influence of these updates on algorithm complexity is discussed
through theoretical and experimental analysis, which have demonstrated that the amount of affected
data is limited. Experiments performed on simulated and real life data sets are also used to verify the
scalability and accuracy of the proposed algorithm.

2.2. Distance-Based Local Density and Outlier Factor Estimation

The distance-based method was used to estimate the local density of an object corresponding to
its CNN area. Given a set of D dimensional objects X = {x1, x2, . . . , xn}, and |X| = n (the number of
data in a sampling dataset or sliding window), where xi ∈ RD for i = 1, 2, . . . , n, the distance-based
method calculates the average distance from xi to its k nearest neighbors kNN(xi) as the local density
of xi:

p(xi) =
1
k ∑

xj∈kNN(xi),j 6=i
‖xi − xj‖ (1)

where ‖xi − xj‖ denotes the Euclidean distance between xi and xj. This data-based density estimation
in Equation (1) has many good properties, such as its non-parametric property and low computational
complexity [21].

After calculating the local density of all objects, the CNN-based local outlier factor (CLOF)
is calculated to measure the density deviation of an object xi from its composite nearest-neighbor
CNN(xi), and is defined as follows:

CLOF(xi) =
p(xi)

1
|CNN(xi)| ∑xk∈CNN(xi),i 6=k p(xk)

(2)

where |CNN(xi)| denotes the number of objects in CNN(xi). The expected value of CLOF is equal to 1
when xi and its CNN neighbors are sampled from the same distribution, which indicates the lower
bound of CLOF for outlier detection [28]. If CLOF(xi) is much larger than 1, then xi would be an
outlier. If CLOF(xi) is equal to or smaller than 1, then xi would not be an outlier. An outlier count for
each data xi in the data stream is designed in this paper. The outlier count of xi will be increased by 1
if CLOF(xi) is greater than 1. Furthermore, xi is judged asan outlier when its outlier count is greater
than or equal to a pre-defined threshold. For a fixed sliding window width n, each data xi can be
processed n times by our CLOF method. In order to take advantage of the temporal correlation of
data, this outlier determination criterion is designed. In contrast, many studies use a single-judgment
criterion, which only judges the outlierness of a data when it is involved in the sliding window at the
first time [7,24].

As shown in Figure 1, the two-dimensional data set X consists of an outlier x1, a dense region,
and a sparse region, where k = 2, x1 is an outlier, and x2 is at the border between the dense and sparse
regions. The kNN, RkNN, SkNN, and CNN of x1 and x2 are separated by different lines. If only kNN
is involved in calculating LOF as in the literature [7,8], x1 and x2 have the same outlierness, which is
obviously wrong. More comprehensively, if kNN, RkNN, and SkNN are involved in estimating the
local neighborhood characteristics, x2 is surrounded by both dense and sparse data, and conversely x1 is
only surrounded by dense data. Thus, x1 has much higher outlierness than x2, which is more accurate.
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For ∀xi ∈ X, the following Theorems 1–3 are proposed to estimate the amount of objects in local
neighbours of xi.

Theorem 1. The amount of objects in kNN(xi) is k.

Proof. Follows directly from the definition of k-nearest neighbor (kNN). �

Theorem 2. Themaximal number of reverse k-nearest neighbors of a record xi is proportional to k, exponentially
proportional to the data dimension d, and does not depend on the total number n in dataset X.

Proof. According to the theoretical proof in [7]: |RkNN(xi)| ≤ F = Θ
(

k2D
√

D
)

, |RkNN(xi)| is
proportional to k, exponentially proportional to the data dimension d, and does not depend on n. �

Theorem 3. The maximal number of shared k-nearest neighbors of a record xi is proportional to k2, exponentially
proportional to the data dimension d, and does not depend on the total number n in data set X.

Proof. The shared k-nearest neighbors of xi are composed of reverse k-nearest neighbors of xi
′s

k-nearest neighbors, then |SkNN(xi)| = |kNN(xi)|·|RkNN(xi)| ≤ Θ
(

k22D
√

D
)

, which proves that

|SkNN(xi)| is proportional to k2, exponentially proportional to the data dimension D, and does not
depend on the total number n in data set X. �

2.3. Incremental Outlier Detection

To follow the nonhomogeneity in data streams, a fixed sliding window with user-specified width is
involved in the CLOF, where a new data point has to be continuously inserted into the sliding window,
and an obsolete data point has to be continuously deleted from the sliding window simultaneously.
In this chapter, the influence of these updates on algorithm complexity is discussed.

In the insertion phase of new data xnew, the CNN and CLOF of xnew are first calculated based
on the distance between xnew and the rest of the data in the sliding window. Then, the affected data
objects should be found, and their CNN and CLOF are updated. As shown in Figure 2, for k = 2, after
the insertion of xnew, the kNN2(5) has changed, and data 5 belongs to RkNN2(xnew), which indicates
that the kNN affected data should be found in RkNN2(xnew). Simultaneously, RkNN-affected data
contains data 4, 5, and 6, which can be divided into two parts: objects in kNN2(xnew) (data 4 and 5)
and objects that are deleted from the kNN of data in RkNN2(xnew); for example, data 6 is deleted from
the kNN of 5, and data 5 belongs to RkNN2(xnew). Finally, SkNN-affected data contains data 5, 7,
and 8. Data 6 has been deleted from kNN2(5), which results in the break of the shared neighborhood
relationship between data 5 and data 7 and 8. Data 5, 7, and 8 belong to RkNN2(6). This indicates that
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the SkNN-affected data set should be found in the RkNN of xdel. Furthermore, xdel is the data set that
is deleted from the kNN of some objects after the insertion of xnew. As shown in Figure 2, data 6 is the
xdel, and it is deleted from kNN2(5) after the insertion of data xnew.
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Therefore, to estimate the algorithm complexity in our incremental update strategy, the Theorems
4–6 are summarized as follows:

Theorem 4. After the insertion of new data xnew, the amount of kNN-affected data is |kNN|affected =

|RkNN(xnew)|.

Proof. The kNN-affected objects are those that contain xnew in their kNN, and |kNN|affected equals

|RkNN(xnew)|. As demonstrated in the literature [7], |RkNN(xnew)| ≤ F = Θ
(

k2D
√

D
)

, where F is
the maximal number of data in kRNN. �

Theorem 5. After the insertion of new data xnew, the amount of RkNN-affected data is |RkNN|affected =

|kNN(xnew)|+ |RkNN(xnew)|.

Proof. The RkNN-affected objects contain objects in kNN(xnew), and objects that are deleted from
the kNN of objects in RkNN(xnew). For objects in RkNN(xnew), their kNN will include xnew and will
delete one RkNN affected object at the same time. This indicates that the amount of objects that are
deleted from the kNN of objects in RkNN(xnew) equals |RkNN(xnew)|. Then, |RkNN|affected equals
|kNN(xnew)|+ |RkNN(xnew)| ≤ k + F. �

Theorem 6. After the insertion of new data xnew, the amount of SkNN-affected data is |SkNN|affected =

|RkNN(xnew)|·|RkNN(xdel)|.

Proof. xdel is deleted from the kNN of some objects after the insertion of xnew, which results in the
break of the shared neighborhood relationship between data in RkNN(xdel). When only one new data
as the xnew is inserted, the amount of xdel obviously equals the amount of kNN-affected data, which is
|RkNN(xnew)|, as proved in Theorem 4. Then, |SkNN|affected equals |RkNN(xnew)|·|RkNN(xdel)| ≤
F2 = Θ

(
k222DD

)
. �

According to the above theoretical analysis, it is proven that the amount of affected data in the
incremental update strategy for outlier detection is limited. Therefore, the asymptotic time complexity
for insertion into the incremental strategy is:
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Tinsertion = O(|kNN|affected·TkNN + |RkNN|affected·TRkNN + |SkNN|affected·TSkNN)

where TkNN, TRkNN, and TSkNN are respectively the time consumptions in kNN, RkNN, and SkNN
searching methods, and can be approximated by TkNN = TRkNN = TSkNN = O(log n) when efficient
indexing structures for inserting data are used in a fixed sliding window with n width [29]. Then:

Tinsertion = O
((

k + 2F + F2
)
· log n

)
(3)

When all updates to the dataset of size N are applied, the time complexity of the incremental
update algorithm is O(N log N), which is the same as the state-of-the-art methods [7,8]. As the
processes of insertion and deletion in the sliding window are opposite to each other, they have the
same time complexity. Then, because of the limitation of length, no additional proof of the deletion
process within sliding window is discussed here. Finally, the pseudocode of CLOF algorithm is
presented in Table 1.

Table 1. The pseudocode of the CNN-based local outlier factor (CLOF) algorithm.

Input: k, X, d, n, t and N = |X| > (2n− 1).
Output: Outliersin X
1 Collects n data as the first training set;
2 Searches the kNN, RkNN, and SkNN for xi, and 1 ≤ i ≤ n;
3 Calculates CLOF(xi), if CLOF(xi) > 1, outlier count of xi increased by 1;
4 Collects a new data xn+1, deletes the obsolete data point x1;
5 if the outlier count of x1 ≥ t (1 ≤ t ≤ n), x1 is an outlier;
6 Searches the kNN, RkNN, and SkNN for xn+1, and 2 ≤ i ≤ n + 1;
7 Updates the kNN, RkNN, SkNN, and CLOF for affected data;
8 Calculates CLOF(xi), if CLOF(xi) > 1, outlier count of xi increased by 1;
9 Collects a new data xn+2, deletes the obsolete data point x2;
10 if the outlier count of x2 ≥ t (1 ≤ t ≤ n), x2 is an outlier;
11 Searches the kNN, RkNN, and SkNN for xn+2, and 3 ≤ i ≤ n + 2;
12 Updates the kNN, RkNN, SkNN, and CLOF for affected data;
13 Calculates CLOF(xi), if CLOF(xi) > 1, outlier count of xi increased by 1;
14 Continue with steps 4–13;
15 Till the end of X;
16 Output the outliers in X;

In the CLOF method, if CLOF(xi) is continuously greater than 1 and its outlier count is greater
than or equal to the threshold t (1 ≤ t ≤ n), xi is an outlier. The basis of outlier judgment is under
the consideration that data streams are dynamically changing, and that a local outlier should be
significantly different from its prior and post data. Therefore, the novel method uses the prior and
post (n − 1) data for each data xi to detect its outlierness, where the outlierness of data xi (n ≤ i ≤ N −
n + 1) can be calculated n times (n is the sliding window width and N is the total amount of data in X).

3. Results

3.1. Scalablity

The proposed CLOF method was designed to detect outlier in data streams, where the varying
sliding window width, k-nearest neighbor and data dimension were the main challenges for detection
accuracy and efficiency. In this chapter, the efficiency, complexity, and scalability of the algorithm were
analyzed based on synthetic datasets with different scales and known outliers, to obtain a much better
understanding of the effect of data amounts and dimensions. Therefore, experiments were designed
to verify: (i) the relation between the number of CLOF-affected data and the data scale N; (ii) the
dependence of the number of CLOF affected-data on parameter k; and (iii) the dependence of the
number of CLOF-affected data on the dimension d; (iv) the efficiency of the proposed CLOF method
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compared to the kNN-based method (summarized as kLOF) and the composite nearest neighborhood
(CNN)-based method without an incremental update strategy (summarized as CNN_WIUS). The kLOF
method also used Equation (1) to estimate the local density of data, but only used the k-nearest
neighbors to estimate the local outlier factor as follows:

kLOF(xi) =
p(xi)

1
|kNN(xi)| ∑xk∈kNN(xi),i 6=k p(xk)

(4)

where |kNN(xi)| denotes the amount of objects in kNN(xi). The expected value of kLOF equaled 1
when xi and its kNN neighbors were sampled from the same distribution. If kLOF(xi) was much
larger than 1, then xi would be an outlier. If kLOF(xi) was equal or smaller than 1, then xi would
not be an outlier. By introducing the comparative analysis with the popular kNN-based method,
the outlier detecting the performance of CNN based method was presented.

The CNN_WIUS method used the same Equations (1) and (2) with the CLOF method to calculate
the local density and local outlier factor of data. However, CNN_WIUS did not involve the incremental
update strategy proposed in Section 2.3 compared to CLOF.

All experiments were implemented in MatLabR2013a with a Windows 7 system running on a
Core i5-4590 CPU (3.3 GHz).

Similar rules as presented in [7] were used to define synthetic datasets with uniform (uniformly
distributed in [−1, 1]) and standard Gaussian distributions (zero mean and unit covariance matrix),
which were characterized as different number of data records (N ∈ {100, 200, . . . , 5000}), different
number of dimensions (D ∈ {2, 4, 6, 8, 10}), and different parameters k (5, 10, 15, 20). For each dataset
with specific N, D and k, a total of 50 constructions and computations were repeated to remove the
effect of random factors. New data with the same distribution of the dataset were inserted to analyze
the amount of CLOF-affected data. Several results are presented in Figures 3–6.
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Figures 3 and 4 show the dependence of the number of CLOF updates on the total number of
data records N (x-axis), data dimension D, and parameter k, using data from a standard Gaussian
distribution and uniform distribution separately. Each CLOF updates in these two figures were
obtained from the mean result of 100 synthetic dataset generations and calculations. It can be observed
that the number of CLOF updates did not depend on the data amount N, and was stable when N
was sufficiently large (N > 2000), which has already been verified in Section 3.2. For larger k and d,
the number of CLOF updates was generally much larger.
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Figures 5 and 6 show the dependence of the number of CLOF updates on data dimension D
and parameter k in standard Gaussian distribution and uniform distribution separately. It can be
observed that the number of CLOF updates increased with k, but was not square-proportional to k,
as verified in Theorems 4–6. In addition, the number of CLOF updates increased with D, but was also
not exponentially proportional to D, as verified in Theorems 4–6. The intuitive information from these
experimental results was that the local neighborhood parameter k and data dimension D would not be
the fatal bottleneck of the novel algorithm. This was an optimistic result compared with the theoretical
analysis, and could be partially explained by that the affected kNN, RkNN, and SkNN usually
contained some identical data. As shown in Figure 2, observation 5 was in kNNaffected, RkNNaffected,
and SkNNaffected. Furthermore, the theoretical analysis in Theorems 4–6 was very pessimistic, since
not all data in the theoretical scope was really affected by the new data insertion.
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With the same synthetic datasets generated by uniform (uniformly distributed in [–1, 1]) and
standard Gaussian distributions (zero mean and unit covariance matrix), the efficiency of the proposed
CLOF method was analyzed compared to the kLOF method and the CNN_WIUS method. These
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synthetic datasets were also characterized as different numbers of data records (N ∈ {100, 500, 1000,
2000, 3000, 4000 and 5000}), different number of dimensions (D ∈ {2, 6, 10}), and different parameter k
(5, 10, 20). For each dataset with specific N, D, and k, a total of 50 constructions and computations were
repeated to remove the effect of random factors. New data with the same distribution of datasets were
inserted to analyze the efficiency of updating the local outlier factors in a new sliding window.

As shown in Figures 7 and 8, both on the standard Gaussian distribution and uniform distribution
synthetic datasets, the proposed CLOF method had excellent efficiency compared to the kLOF and the
CNN_WIUS methods; for example, in Figure 7a–c, the updating time of kLOF, CNN_WIUS, and CLOF
was 5.7, 8.9, and 5.9 s respectively when data dimension D = 2 and sliding window width N = 5000;
the updating time of kLOF, CNN_WIUS, and CLOF was 7.6, 10.8 and 5.9 s respectively when data
dimension D = 6 and sliding window width N = 5000, and the updating time of kLOF, CNN_WIUS,
and CLOF was 9.4, 12.6, and 5.9 s respectively when data dimension D = 10 and sliding window width
N = 5000. These results indicated that the proposed CLOF method had comparable efficiency with the
state-of-the-art kNN-based methods, the proposed incremental update strategy could improve the
efficiency of CNN-based outlier detection methods, and this strategy reduced the sensitivity to data
dimension D compared to the kLOF and CNN_WIUS methods. Similar results were also obtained for
the uniform distribution synthetic datasets, as shown in Figure 8.
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A clear relationship among the efficiency of kLOF, CNN_WIUS, and CLOF methods was
CLOF > kLOF > CNN_WIUS when the sliding window width N was large enough. However,
as shown in Figure 9, by analyzing the update time when N took a small value, there was a significant
intersection of the time curves of the kLOF and CLOF methods; that is, the efficiency of kLOF was
higher than that of CLOF. For example, the updating time of kLOF was 0.002, 0.009, and 0.271 s when
k = 5, D = 6, and N = 100, 500, and 1000 respectively, and that of CLOF was 0.040, 0.041, and 0.230 s
when K = 5, D = 6, and N = 100, 500, and 1000 respectively, which caused a significant intersection in
the time curves of the kLOF and CLOF methods. Therefore, the proposed incremental update strategy
consumed larger amounts of calculation resources than that of the direct update when the sliding
window width N was small, and the proposed method could better reduce the amount of calculations
when updating the local outlier factor with large amounts of data.
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3.2. Outlier Detection

Three real-life data sets with clear normal or outlier data information were used to verify the
outlier detection performance of the proposed method. Based on each dataset, to compare the proposed
CLOF method with the kLOF method, the receiver operating characteristic curves (ROC) (false positive
rate (FPR) versus true/positive detection rate (DR)) were depicted with different k and sliding window
widths n related to the outlier detection threshold t. The area under the ROC curve (AUC) was
calculated as outlier detection accuracy.

Furthermore, for two classic data flows: KDD Cup 1999 and Shuttle datasets [30], the same
descriptions in [31] were followed, and these two real-life data sets had enough data and could
simulate a data stream. For the Labelled Wireless Sensor Network Data Repository (LWSNDR) [32],
the size of consecutive outliers was cut down by equal interval sampling to reduce computational
complexity. All experiments are implemented in MatLabR2013a with a Windows 7 system running on
a Core i5-4590 CPU (3.3 GHz).

KDD Cup 1999 dataset: 60,593normal data and 228 outlier data (U2R attacks) with 36 attributes
arranged randomly and normalized to [0, 1].

Shuttle dataset: 34,108 normal data (class 1) and 2644 outlier data (class 2, 3, 5, 6, 7) with nine
attributes arranged randomly and normalized to [0, 1].

LWSNDR dataset: Two attributes, sampling one data at the interval of four original data from
the multi-hop outdoor moteid1 dataset and the multi-hop indoor moteid3 dataset; then, the sampled
moteid1 dataset had 1158 normal data and 14 outliers, and the sampled moteid3 dataset had
1147 normal data and 25 outliers.

Firstly, different k were involved to investigate the effect of k on detection performance. As shown
in Figure 10, ROC curves of kLOF and CLOF methods on the KDD Cup 1999 dataset were drawn with
different k (changing from 2 to 20 with interval 2) related to t (changing from 50 to 1 with interval 1)
and n (fixed to 50). After comparing the results in Figure 10a,b, it was obvious that both FPR and
DR increased with a decrease in t and an increase in k. For the same k, t, and FPR, the DR of the new
CLOF method was much better than that of the kLOF method, which also led to a much higher AUC
value than that of the kLOF method (see Figure 11a). The boxplots in Figure 11b show the changes of
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kLOF and CLOF AUC values with different k, and indicates that the CLOF method has better outlier
detection performance and stability against k changing than the kNN-based method.Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 19 
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Next, the parameter n was adopted to investigate its effect on detection performance. As shown
in Figure 12, ROC curves of kLOF and CLOF methods on the KDD Cup 1999 dataset were drawn with
different n (changing from 20 to 80 with interval 10) related to t (changing from 20 to 1 with interval 1)
and k (fixed to 10). It was shown that both FPR and DR increased with the decrease of t and the increase
of n. For the same k, t, and FPR, the DR of the new CLOF method was also much better than that of the
kLOF method, which led to a much higher AUC value (see Figure 13a). The boxplots in Figure 13b
showed the dispersion of kLOF and CLOF AUC values, and indicates that the CLOF method had
better outlier detection performance and stability against n changing than the kNN-based method.
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Similar results also appeared in the analysis of the Shuttle data set, as shown in Figures 14–17.
Due to the limit of space, only the experimental results are provided: the CNN-based method CLOF
had better outlier detection performance and stability against n and k changing than the kNN-based
method kLOF.
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The LWSNDR dataset is a time series type dataset from the Wireless Sensor Network. This dataset
was different than the discrete data of the KDD Cup 1999 and Shuttle datasets; however, the proposed
CLOF method had comparable outlier detection accuracy with the kNN-based kLOF method, as shown
in Figure 18. However, due to the nonhomogeneity in LWSNDR dataset, the detection accuracy had
obvious degradation in the moteid3 dataset when k was small, as shown in Figure 18c,d. This indicates
that the parameter k and n should be optimized to obtain better detection accuracy, which can be
summarized as the adaptive optimization of sliding window width problems.
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Figure 18. AUC values of kLOF and CLOF methods on the LWSNDR dataset: (a) the AUC values of
kLOF and CLOF methods with different k and n = 50 on the multi-hop outdoor moteid1 dataset; (b) the
AUC values of kLOF and CLOF methods with different n and k = 10 on the multi-hop outdoor moteid1
dataset; (c) the AUC values of kLOF and CLOF methods with different k and n = 50 on the multi-hop
indoor moteid3 dataset; (d) the AUC values of kLOF and CLOF methods with different n and k = 10 on
the multi-hop indoor moteid3 dataset.

With the tests on three real-life datasets, the proposed CLOF method obtained better outlier
detection performance than the kNN-based kLOF method. In many applications such as signal
processing and intrusion detection of the network, It was very important to obtain high DR with
low FPR. However, the DR and FPR were two conflicting factors, and DR increased with FPR. In the
tests with different k, when k increased and became close to n, DR tended to increase quickly, and
FPR tended to increase slowly. In the tests with different n, when n increased away from k, DR
tended to increase slowly, and FPR tend to increase quickly. These results indicated that the maximum
compromise of DR and FPR appeared when k was close to n. The choice of k and n can be summarized
as the optimization problem of sliding window width, which is another important research direction
and will be researched in future studies.

4. Discussion

A novel incremental local outlier detection method CLOF for data streams is proposed in this
paper. Composite nearest neighborhoods consisting of the k-nearest neighbor, reverse nearest neighbor,
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and shared nearest neighbor were involved, to describe the local features of the data. To follow
the nonhomogeneity in data streams, a fixed sliding window with data updates is introduced,
and the influence of these updates on algorithm complexity has been discussed. The theoretical
evidence of algorithm complexity for insertion of new data and deletion of old data in composite local
neighborhood shows that the amount of data affected in the incremental calculation is limited, and the
proposed approach has comparable algorithm complexity with the state-of-the-art methods. Finally,
experiments performed on both synthetic and real datasets verify its complexity and scalability, and
shows its excellent outlier detection performance.

In future work, the proposed method will be improved in the following two aspects: first, other
local neighborhood description methods can be incorporated into our proposed approach to improve
the description and scene of the local data neighborhood; for example, in fault diagnosis. Second, other
new models of incremental updates should be researched; for example, data feature extraction and
updating technology based on clustering, which could be used to replace the fixed sliding window to
a variable parameter feature extraction for data streams.
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