Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/16649
Autoria: Zhao, J.
Jiao, L.
Xia, S.
Basto-Fernandes, V.
Yevseyeva, I.
Zhou, Y.
Emmerichd, M. T. M.
Data: 2018
Título próprio: Multiobjective sparse ensemble learning by means of evolutionary algorithms
Volume: 111
Paginação: 86 - 100
ISSN: 0167-9236
DOI (Digital Object Identifier): 10.1016/j.dss.2018.05.003
Palavras-chave: Ensemble learning
Sparse representation
Classification
Multiobjective optimization
Change detection
Resumo: Ensemble learning can improve the performance of individual classifiers by combining their decisions. The sparseness of ensemble learning has attracted much attention in recent years. In this paper, a novel multiobjective sparse ensemble learning (MOSEL) model is proposed. Firstly, to describe the ensemble classifiers more precisely the detection error trade-off (DET) curve is taken into consideration. The sparsity ratio (sr) is treated as the third objective to be minimized, in addition to false positive rate (fpr) and false negative rate (fnr) minimization. The MOSEL turns out to be augmented DET (ADET) convex hull maximization problem. Secondly, several evolutionary multiobjective algorithms are exploited to find sparse ensemble classifiers with strong performance. The relationship between the sparsity and the performance of ensemble classifiers on the ADET space is explained. Thirdly, an adaptive MOSEL classifiers selection method is designed to select the most suitable ensemble classifiers for a given dataset. The proposed MOSEL method is applied to well-known MNIST datasets and a real-world remote sensing image change detection problem, and several datasets are used to test the performance of the method on this problem. Experimental results based on both MNIST datasets and remote sensing image change detection show that MOSEL performs significantly better than conventional ensemble learning methods.
Arbitragem científica: yes
Acesso: Acesso Aberto
Aparece nas coleções:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
MOSEL_BW.pdfPós-print6,54 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.