Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/16609
Author(s): Gonçalves, F.
Pereira, R.
Ferreira, J.
Vasconcelos, J. B.
Melo, F.
Velez, I.
Date: 2018
Title: Emergency waiting times data analysis
Volume: 45
Number: 3
Pages: 494 - 499
ISSN: 1819-9224
Keywords: Big data
Data mining
Emergency department
Healthcare
Abstract: The Emergency Departments (ED) are a complex and important area of a hospital. With limited resources, it is mandatory to focus on efficiency. When hospitals are unable to deal with high demand, problems may rise leading to longer waiting times and more dissatisfaction. In this research, the authors extracted knowledge from a hospital ED, through data analysis and data mining, applying Random Forest and Naïve Bayes to study the ED patient waiting time and diseases.
Peerreviewed: yes
Access type: Open Access
Appears in Collections:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
IJCS_45_3_14 (1).pdfVersão Editora1,23 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.