Utilize este identificador para referenciar este registo:
                
    
    http://hdl.handle.net/10071/16227| Autoria: | Barraza, N. Moro, S. Ferreyra, M. de la Peña, A. | 
| Data: | 2019 | 
| Título próprio: | Mutual information and sensitivity analysis for feature selection in customer targeting: a comparative study | 
| Volume: | 45 | 
| Número: | 1 | 
| Paginação: | 53 - 67 | 
| ISSN: | 0165-5515 | 
| DOI (Digital Object Identifier): | 10.1177/0165551518770967 | 
| Palavras-chave: | Customer targeting Direct marketing Feature selection Modelling Mutual information Sensitivity analysis | 
| Resumo: | Feature selection is a highly relevant task in any data-driven knowledge discovery project. The present research focuses on analysing the advantages and disadvantages of using mutual information (MI) and data-based sensitivity analysis (DSA) for feature selection in classification problems, by applying both to a bank telemarketing case. A logistic regression model is built on the tuned set of features identified by each of the two techniques as the most influencing set of features on the success of a telemarketing contact, in a total of 13 features for MI and 9 for DSA. The latter performs better for lower values of false positives while the former is slightly better for a higher false-positive ratio. Thus, MI becomes a better choice if the intention is reducing slightly the cost of contacts without risking losing a high number of successes. However, DSA achieved good prediction results with less features. | 
| Arbitragem científica: | yes | 
| Acesso: | Acesso Aberto | 
| Aparece nas coleções: | ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica | 
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| 2018-JIS-BarrazaMoroEtAl-PosPrint.pdf | Pós-print | 677,99 kB | Adobe PDF | Ver/Abrir | 
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.
 
          











