Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/16118
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoro, S.-
dc.contributor.authorCortez, P.-
dc.contributor.authorRita, P.-
dc.date.accessioned2018-06-12T11:10:57Z-
dc.date.available2018-06-12T11:10:57Z-
dc.date.issued2018-
dc.identifier.issn0266-4720-
dc.identifier.urihttp://hdl.handle.net/10071/16118-
dc.description.abstractThe discovery of knowledge through data mining provides a valuable asset for addressing decision making problems. Although a list of features may characterize a problem, it is often the case that a subset of those features may influence more a certain group of events constituting a sub-problem within the original problem. We propose a divide-and-conquer strategy for data mining using both the data-based sensitivity analysis for extracting feature relevance and expert evaluation for splitting the problem of characterizing telemarketing contacts to sell bank deposits. As a result, the call direction (inbound/outbound) was considered the most suitable candidate feature. The inbound telemarketing sub-problem re-evaluation led to a large increase in targeting performance, confirming the benefits of such approach and considering the importance of telemarketing for business, in particular in bank marketing.eng
dc.language.isoeng-
dc.publisherJohn Wiley and Sons-
dc.relationUID/MULTI/0446/2013-
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147229/PT-
dc.rightsopenAccess-
dc.subjectBankingeng
dc.subjectData miningeng
dc.subjectDivide and conquereng
dc.subjectFeature selectioneng
dc.subjectMarketingeng
dc.titleA divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketingeng
dc.typearticle-
dc.event.date2018-
dc.publicationstatusPublicadopor
dc.peerreviewedyes-
dc.journalExpert Systems-
dc.distributionInternacionalpor
dc.volume35-
dc.number3-
degois.publication.issue3-
degois.publication.titleA divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketingeng
dc.date.updated2019-03-08T11:38:25Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1111/exsy.12253-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.date.embargo2019-06-12
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-39039-
iscte.alternateIdentifiers.wosWOS:000434639000004-
iscte.alternateIdentifiers.scopus2-s2.0-85032257807-
Appears in Collections:CIS-RI - Artigos em revistas científicas internacionais com arbitragem científica
ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
2017_ES-MoroCortezRita-PosPrint.pdfPós-print822,21 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.