Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/5541
Author(s): Curto, J.
Pinto, J. C.
Tavares, G. N.
Date: 2009
Title: Modeling stock markets' volatility using GARCH models with normal, student's t and stable paretian distributions
Volume: 50
Number: 2
Pages: 311 - 321
Reference: Curto, J., Pinto, J. C., & Tavares, G. N. (2009). Modeling stock markets' volatility using GARCH models with normal, student's t and stable paretian distributions. Statistical Papers. 50 (2), 311-321. https://dx.doi.org/10.1007/s00362-007-0080-5
ISSN: 0932-5026
DOI (Digital Object Identifier): 10.1007/s00362-007-0080-5
Keywords: Non-Gaussian distributions
Conditional heteroskedasticity
Abstract: As GARCH models and stable Paretian distributions have been revisited in the recent past with the papers of Hansen and Lunde (J Appl Econom 20: 873–889, 2005) and Bidarkota and McCulloch (Quant Finance 4: 256–265, 2004), respectively, in this paper we discuss alternative conditional distributional models for the daily returns of the US, German and Portuguese main stock market indexes, considering ARMA-GARCH models driven by Normal, Student’s t and stable Paretian distributed innovations. We find that a GARCH model with stable Paretian innovations fits returns clearly better than the more popular Normal distribution and slightly better than the Student’s t distribution. However, the Student’s t outperforms the Normal and stable Paretian distributions when the out-of-sample density forecasts are considered.
Peerreviewed: yes
Access type: Open Access
Appears in Collections:BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
article_10191.pdfPós-print272,29 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.