Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/35713
Registo completo
Campo DCValorIdioma
dc.contributor.authorDias, L. M. S.-
dc.contributor.authorBastos, A. R.-
dc.contributor.authorAlves, T.-
dc.contributor.authorTowe, E.-
dc.contributor.authorFerreira, R. A. S.-
dc.contributor.authorAndré, P. S. B.-
dc.date.accessioned2025-12-10T09:38:23Z-
dc.date.available2025-12-10T09:38:23Z-
dc.date.issued2025-
dc.identifier.citationDias, L. M. S., Bastos, A. R., Alves, T., Towe, E., Ferreira, R. A. S., & André, P. S. B. (2025). Advancing optoelectronic reservoir computing: Enhancing performance through ultrafast neuromorphic hardware technologies. Optics and Laser Technology, 192, Part F, Article 114088. https://doi.org/10.1016/j.optlastec.2025.114088-
dc.identifier.issn0030-3992-
dc.identifier.urihttp://hdl.handle.net/10071/35713-
dc.description.abstractReservoir computing is a neuromorphic architecture based on artificial neural networks. It has gathered significant attention due to its simplicity and efficiency in processing complex sequential data for real-world tasks. We propose an advanced optoelectronic reservoir computing system that uses a single nonlinear node comprised of a Mach-Zehnder interferometer, an optical delay line, and several high-bandwidth integrated optoelectronic components. This system shows efficient performance on benchmark tasks such as signal recognition with an accuracy of 100%, nonlinear channel equalization for generating reconstructed signals with symbol error rates of 10−55, and time-series predictions that reach normalized mean square errors in the order of 10−2.eng
dc.language.isoeng-
dc.publisherElsevier-
dc.relationinfo:eu-repo/grantAgreement/FCT//UI%2FBD%2F153491%2F2022/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/Avaliação UID 2023%2F2024/UID%2F50011%2F2025/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso para Atribuição do Estatuto e Financiamento de Laboratórios Associados (LA)/LA%2FP%2F0109%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/Avaliação UID 2023%2F2024/UID%2F50008%2F2025/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/CEEC INST 2ed/CEECINST%2F00058%2F2021%2FCP2816%2FCT0004/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso para Atribuição do Estatuto e Financiamento de Laboratórios Associados (LA)/LA%2FP%2F0006%2F2020/PT-
dc.rightsopenAccess-
dc.subjectNeuromorphic engineeringeng
dc.subjectTime series predictionseng
dc.subjectSignal classificationeng
dc.subjectSignal reconstructioneng
dc.subjectReservoir computingeng
dc.titleAdvancing optoelectronic reservoir computing: Enhancing performance through ultrafast neuromorphic hardware technologieseng
dc.typearticle-
dc.peerreviewedyes-
dc.volume192, Part F-
dc.date.updated2025-12-09T16:15:08Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.1016/j.optlastec.2025.114088-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências Físicaspor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiaispor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-114128-
iscte.alternateIdentifiers.wosWOS:WOS:001603458800004-
iscte.journalOptics and Laser Technology-
Aparece nas coleções:IT-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_114128.pdf2,47 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.