Please use this identifier to cite or link to this item:
http://hdl.handle.net/10071/35102
Author(s): | Ribeiro, E. Antunes, D. Mamede, N. Baptista, J. |
Date: | 2025 |
Title: | Exploring few-shot approaches to automatic text complexity assessment in European Portuguese |
Journal title: | Journal of the Brazilian Computer Society |
Volume: | 31 |
Number: | 1 |
Pages: | 690 - 710 |
Reference: | Ribeiro, E., Antunes, D., Mamede, N., & Baptista, J. (2025). Exploring few-shot approaches to automatic text complexity assessment in European Portuguese. Journal of the Brazilian Computer Society, 31(1), 690-710. https://doi.org/10.5753/jbcs.2025.5820 |
ISSN: | 0104-6500 |
DOI (Digital Object Identifier): | 10.5753/jbcs.2025.5820 |
Keywords: | Text complexity Readability Few-shot Prompting Large Language Models |
Abstract: | The automatic assessment of text complexity has an important role to play in the context of language education. In this study, we shift the focus from L2 learners to adult native speakers with low literacy by exploring the new iRead4Skills dataset in European Portuguese. Furthermore, instead of relying on classical machine learning approaches or fine-tuning a pre-trained language model, we leverage the capabilities of prompt-based Large Language Models (LLMs), with a special focus on few-shot prompting approaches. We explore prompts with varying degrees of information, as well as different example selection approaches. Overall, the results of our experiments reveal that even a single example significantly increases the performance of the model and that few-shot approaches generalize better than fine-tuned models. However, automatic complexity assessment is a difficult and highly subjective task that is still far from solved. |
Peerreviewed: | yes |
Access type: | Open Access |
Appears in Collections: | CTI-RI - Artigos em revistas científicas internacionais com arbitragem científica |
Files in This Item:
File | Size | Format | |
---|---|---|---|
article_112787.pdf | 265,59 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.