Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/35102
Autoria: Ribeiro, E.
Antunes, D.
Mamede, N.
Baptista, J.
Data: 2025
Título próprio: Exploring few-shot approaches to automatic text complexity assessment in European Portuguese
Título da revista: Journal of the Brazilian Computer Society
Volume: 31
Número: 1
Paginação: 690 - 710
Referência bibliográfica: Ribeiro, E., Antunes, D., Mamede, N., & Baptista, J. (2025). Exploring few-shot approaches to automatic text complexity assessment in European Portuguese. Journal of the Brazilian Computer Society, 31(1), 690-710. https://doi.org/10.5753/jbcs.2025.5820
ISSN: 0104-6500
DOI (Digital Object Identifier): 10.5753/jbcs.2025.5820
Palavras-chave: Text complexity
Readability
Few-shot Prompting
Large Language Models
Resumo: The automatic assessment of text complexity has an important role to play in the context of language education. In this study, we shift the focus from L2 learners to adult native speakers with low literacy by exploring the new iRead4Skills dataset in European Portuguese. Furthermore, instead of relying on classical machine learning approaches or fine-tuning a pre-trained language model, we leverage the capabilities of prompt-based Large Language Models (LLMs), with a special focus on few-shot prompting approaches. We explore prompts with varying degrees of information, as well as different example selection approaches. Overall, the results of our experiments reveal that even a single example significantly increases the performance of the model and that few-shot approaches generalize better than fine-tuned models. However, automatic complexity assessment is a difficult and highly subjective task that is still far from solved.
Arbitragem científica: yes
Acesso: Acesso Aberto
Aparece nas coleções:CTI-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_112787.pdf265,59 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.