Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/34580
Author(s): Martins, S.
Garrido, N.
Sebastião, P.
Editor: Maria Manuela Cruz-Cunha
Dulce Domingos
Emanuel Peres
Rui Rijo
Date: 2024
Title: Port request classification automation through NLP
Volume: 239
Book title/volume: Procedia Computer Science
Pages: 1927 - 1934
Event title: 2023 International Conference on ENTERprise Information Systems, CENTERIS 2023 - International Conference on Project MANagement, ProjMAN 2023 - International Conference on Health and Social Care Information Systems and Technologies, HCist 2023
Reference: Martins, S., Garrido, N., & Sebastião, P. (2024). Port request classification automation through NLP. In M. M. Cruz-Cunha, D. Domingos, E. Peres, & R. Rijo (Eds.), Procedia Computer Science (pp.1927-1934). Elsevier. 10.1016/j.procs.2024.06.376
ISSN: 1877-0509
DOI (Digital Object Identifier): 10.1016/j.procs.2024.06.376
Keywords: NLP
Request classification
Help desk
Machine learning
Port systems
Abstract: This paper describes a suggested prototype to carry out the automatic classification of requests from a Port Help Desk. It intents to ascertain if the implementation of this framework is viable for this sector. For this purpose different models were employed, such as SVM, Decision Tree, Random Forest, LSTM, BERT and a SVM hierarchical model. To verify their efficiency these models were evaluated using Precision, Recall and F1-Score metrics. We obtained F1-Scores of 94.36% and 92.48% when classifying the request’s category and group respectively. A F1-Score of 93.41% while using a SVM model for category classification when employing a hierarchical classification architecture.
Peerreviewed: yes
Access type: Open Access
Appears in Collections:IT-CRI - Comunicações a conferências internacionais

Files in This Item:
File SizeFormat 
conferenceObject_106599.pdf569,93 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.