Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/34580
Autoria: | Martins, S. Garrido, N. Sebastião, P. |
Editor: | Maria Manuela Cruz-Cunha Dulce Domingos Emanuel Peres Rui Rijo |
Data: | 2024 |
Título próprio: | Port request classification automation through NLP |
Volume: | 239 |
Título e volume do livro: | Procedia Computer Science |
Paginação: | 1927 - 1934 |
Título do evento: | 2023 International Conference on ENTERprise Information Systems, CENTERIS 2023 - International Conference on Project MANagement, ProjMAN 2023 - International Conference on Health and Social Care Information Systems and Technologies, HCist 2023 |
Referência bibliográfica: | Martins, S., Garrido, N., & Sebastião, P. (2024). Port request classification automation through NLP. In M. M. Cruz-Cunha, D. Domingos, E. Peres, & R. Rijo (Eds.), Procedia Computer Science (pp.1927-1934). Elsevier. 10.1016/j.procs.2024.06.376 |
ISSN: | 1877-0509 |
DOI (Digital Object Identifier): | 10.1016/j.procs.2024.06.376 |
Palavras-chave: | NLP Request classification Help desk Machine learning Port systems |
Resumo: | This paper describes a suggested prototype to carry out the automatic classification of requests from a Port Help Desk. It intents to ascertain if the implementation of this framework is viable for this sector. For this purpose different models were employed, such as SVM, Decision Tree, Random Forest, LSTM, BERT and a SVM hierarchical model. To verify their efficiency these models were evaluated using Precision, Recall and F1-Score metrics. We obtained F1-Scores of 94.36% and 92.48% when classifying the request’s category and group respectively. A F1-Score of 93.41% while using a SVM model for category classification when employing a hierarchical classification architecture. |
Arbitragem científica: | yes |
Acesso: | Acesso Aberto |
Aparece nas coleções: | IT-CRI - Comunicações a conferências internacionais |
Ficheiros deste registo:
Ficheiro | Tamanho | Formato | |
---|---|---|---|
conferenceObject_106599.pdf | 569,93 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.