Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/34358
Registo completo
Campo DCValorIdioma
dc.contributor.authorBacellar, A.-
dc.contributor.authorSusskind, Z.-
dc.contributor.authorBreternitz Jr., M.-
dc.contributor.authorJohn, E.-
dc.contributor.authorJohn, L.-
dc.contributor.authorLima, P.-
dc.contributor.authorFrança, F.-
dc.contributor.editorSalakhutdinov R., Kolter Z., Heller K., Weller A., Oliver N., Scarlett J., Berkenkamp F.-
dc.date.accessioned2025-05-08T09:05:12Z-
dc.date.available2025-05-08T09:05:12Z-
dc.date.issued2024-
dc.identifier.citationBacellar, A., Susskind, Z., Breternitz Jr., M., John, E., John, L., Lima, P., & França, F. (2024). Differentiable weightless neural networks. In R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, & F. Berkenkamp (Eds.), Proceedings of the 41st International Conference on Machine Learning, PMLR (pp. 2277-2295). ML Research Press. http://hdl.handle.net/10071/34358-
dc.identifier.issn2640-3498-
dc.identifier.urihttp://hdl.handle.net/10071/34358-
dc.description.abstractWe introduce the Differentiable Weightless Neural Network (DWN), a model based on interconnected lookup tables. Training of DWNs is enabled by a novel Extended Finite Difference technique for approximate differentiation of binary values. We propose Learnable Mapping, Learnable Reduction, and Spectral Regularization to further improve the accuracy and efficiency of these models. We evaluate DWNs in three edge computing contexts: (1) an FPGA-based hardware accelerator, where they demonstrate superior latency, throughput, energy efficiency, and model area compared to state-of-the-art solutions, (2) a low-power microcontroller, where they achieve preferable accuracy to XGBoost while subject to stringent memory constraints, and (3) ultralow-cost chips, where they consistently outperform small models in both accuracy and projected hardware area. DWNs also compare favorably against leading approaches for tabular datasets, with higher average rank. Overall, our work positions DWNs as a pioneering solution for edge-compatible high-throughput neural networks.eng
dc.language.isoeng-
dc.publisherML Research Press-
dc.relationC645463824-00000063-
dc.relation#2326894-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT-
dc.relation3148.001-
dc.relation.ispartofProceedings of the 41st International Conference on Machine Learning, PMLR-
dc.rightsopenAccess-
dc.subjectMachine learningeng
dc.subjectDifferentiable networkseng
dc.subjectWeightless neural networkseng
dc.titleDifferentiable weightless neural networkseng
dc.typeconferenceObject-
dc.event.titleProceedings of Machine Learning Research-
dc.event.typeConferênciapt
dc.event.locationViennaeng
dc.event.date2024-
dc.pagination2277 - 2295-
dc.peerreviewedyes-
dc.volume235-
dc.date.updated2025-05-12T11:26:03Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Matemáticaspor
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Civilpor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-105156-
iscte.alternateIdentifiers.wosWOS:WOS:001347135502014-
iscte.alternateIdentifiers.scopus2-s2.0-85203790142-
Aparece nas coleções:ISTAR-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceObject_105156.pdf1,66 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.