Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/34358
Registo completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Bacellar, A. | - |
dc.contributor.author | Susskind, Z. | - |
dc.contributor.author | Breternitz Jr., M. | - |
dc.contributor.author | John, E. | - |
dc.contributor.author | John, L. | - |
dc.contributor.author | Lima, P. | - |
dc.contributor.author | França, F. | - |
dc.contributor.editor | Salakhutdinov R., Kolter Z., Heller K., Weller A., Oliver N., Scarlett J., Berkenkamp F. | - |
dc.date.accessioned | 2025-05-08T09:05:12Z | - |
dc.date.available | 2025-05-08T09:05:12Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Bacellar, A., Susskind, Z., Breternitz Jr., M., John, E., John, L., Lima, P., & França, F. (2024). Differentiable weightless neural networks. In R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, & F. Berkenkamp (Eds.), Proceedings of the 41st International Conference on Machine Learning, PMLR (pp. 2277-2295). ML Research Press. http://hdl.handle.net/10071/34358 | - |
dc.identifier.issn | 2640-3498 | - |
dc.identifier.uri | http://hdl.handle.net/10071/34358 | - |
dc.description.abstract | We introduce the Differentiable Weightless Neural Network (DWN), a model based on interconnected lookup tables. Training of DWNs is enabled by a novel Extended Finite Difference technique for approximate differentiation of binary values. We propose Learnable Mapping, Learnable Reduction, and Spectral Regularization to further improve the accuracy and efficiency of these models. We evaluate DWNs in three edge computing contexts: (1) an FPGA-based hardware accelerator, where they demonstrate superior latency, throughput, energy efficiency, and model area compared to state-of-the-art solutions, (2) a low-power microcontroller, where they achieve preferable accuracy to XGBoost while subject to stringent memory constraints, and (3) ultralow-cost chips, where they consistently outperform small models in both accuracy and projected hardware area. DWNs also compare favorably against leading approaches for tabular datasets, with higher average rank. Overall, our work positions DWNs as a pioneering solution for edge-compatible high-throughput neural networks. | eng |
dc.language.iso | eng | - |
dc.publisher | ML Research Press | - |
dc.relation | C645463824-00000063 | - |
dc.relation | #2326894 | - |
dc.relation | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT | - |
dc.relation | 3148.001 | - |
dc.relation.ispartof | Proceedings of the 41st International Conference on Machine Learning, PMLR | - |
dc.rights | openAccess | - |
dc.subject | Machine learning | eng |
dc.subject | Differentiable networks | eng |
dc.subject | Weightless neural networks | eng |
dc.title | Differentiable weightless neural networks | eng |
dc.type | conferenceObject | - |
dc.event.title | Proceedings of Machine Learning Research | - |
dc.event.type | Conferência | pt |
dc.event.location | Vienna | eng |
dc.event.date | 2024 | - |
dc.pagination | 2277 - 2295 | - |
dc.peerreviewed | yes | - |
dc.volume | 235 | - |
dc.date.updated | 2025-05-12T11:26:03Z | - |
dc.description.version | info:eu-repo/semantics/acceptedVersion | - |
dc.subject.fos | Domínio/Área Científica::Ciências Naturais::Matemáticas | por |
dc.subject.fos | Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação | por |
dc.subject.fos | Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil | por |
iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-105156 | - |
iscte.alternateIdentifiers.wos | WOS:WOS:001347135502014 | - |
iscte.alternateIdentifiers.scopus | 2-s2.0-85203790142 | - |
Aparece nas coleções: | ISTAR-CRI - Comunicações a conferências internacionais |
Ficheiros deste registo:
Ficheiro | Tamanho | Formato | |
---|---|---|---|
conferenceObject_105156.pdf | 1,66 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.