Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/34318
Registo completo
Campo DCValorIdioma
dc.contributor.authorLopes, A. L.-
dc.contributor.authorMauritti, R-
dc.contributor.authorMartins, S. da C.-
dc.contributor.authorPintassilgo, S.-
dc.contributor.authorMatias, C.-
dc.contributor.authorJosé, S.-
dc.contributor.editorLuis Gómez Chova-
dc.contributor.editorChelo González Martínez-
dc.contributor.editorJoanna Lees-
dc.date.accessioned2025-05-05T10:30:52Z-
dc.date.available2025-05-05T10:30:52Z-
dc.date.issued2024-
dc.identifier.citationLopes, A. L., Mauritti, R, Martins, S. da C., Pintassilgo, S., Matias, C., & José, S. (2024). Digital tools for the prevention of dropout and academic failure: A case study of a Portuguese university. In L. Gómez Chova, C. González Martínez, & J. Lees (Eds.), EDULEARN24 Proceedings (pp. 7092-7098). IATED Academy. https://doi.org/10.21125/edulearn.2024.1678-
dc.identifier.isbn978-84-09-62938-1-
dc.identifier.issn2340-1117-
dc.identifier.urihttp://hdl.handle.net/10071/34318-
dc.description.abstractConcern for the academic success of an increasingly diverse student body is receiving greater national and global attention in higher education. Given the increasing exigencies and evolving challenges that students now face, higher education institutions are called upon to develop multifaceted solutions that allow for the identification and prevention of academic pathways that may put their students at risk of failing or dropping out. This paper presents the results of a trial carried out at a Portuguese public university involving the development of digital tools, using machine learning models to help bolster efforts aimed at mitigating the risk of dropout and failure in higher education. From the outset, this trial has been built on interdisciplinary cooperation between specialists within the social sciences, information systems and information technology as well as between teachers, students, and various university departments (Educational Management, Social Action, Soft Skills Lab, Pedagogical Council, Computer Science, Information Systems and Quality Management). The creation of these tools is mainly based on the definition and implementation of an internal information system (Fenix) currently in the testing phase.eng
dc.language.isoeng-
dc.publisherIATED Academy-
dc.relation.ispartofEDULEARN24 Proceedings-
dc.rightsopenAccess-
dc.subjectMachine learning modelseng
dc.subjectAlarm systemseng
dc.subjectDropouteng
dc.subjectHigher education studentseng
dc.titleDigital tools for the prevention of dropout and academic failure: A case study of a Portuguese universityeng
dc.typeconferenceObject-
dc.event.title16th International Conference on Education and New Learning Technologies-
dc.event.typeConferênciapt
dc.event.locationPalma, Spaineng
dc.event.date2024-
dc.pagination7092 - 7098-
dc.peerreviewedyes-
dc.date.updated2025-05-05T11:29:04Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.21125/edulearn.2024.1678-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Ciências da Educaçãopor
iscte.subject.odsEducação de qualidadepor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-104798-
Aparece nas coleções:CIES-CRI - Comunicações a conferências internacionais
IT-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceObject_104798.pdf371,07 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.