Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/34199
Registo completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Duwadi, S. | - |
dc.contributor.author | Coutinho, C. | - |
dc.contributor.editor | Nuno Mateus Coelho | - |
dc.contributor.editor | Manuela Cruz Cunha | - |
dc.date.accessioned | 2025-04-10T08:39:51Z | - |
dc.date.available | 2025-04-10T08:39:51Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Duwadi, S., & Coutinho, C. (2024). ChatGPT based recommendation system for retail shops. In N. M.-Coelho, & M. C. Cunha (Eds.), Procedia Computer Science (pp. 253-260). Elsevier. https://doi.org/10.1016/j.procs.2024.05.103 | - |
dc.identifier.issn | 1877-0509 | - |
dc.identifier.uri | http://hdl.handle.net/10071/34199 | - |
dc.description.abstract | The rapid growth of e-commerce platforms has emphasized the significance of personalized recommendation systems in enhancing user engagement and satisfaction. This research paper presents the development and evaluation of an innovative Product Recommendation System that leverages advanced Artificial Intelligence (AI) techniques to provide tailored product suggestions. The primary objective is to create a user-centric experience by integrating an AI assistant, enabling natural and interactive interactions. Through a comprehensive survey conducted to understand customer behaviour while purchasing product using AI, the study aims to assess the system's effectiveness in delivering accurate recommendations and providing a seamless purchasing experience. The paper contributes to the field by showcasing the practical implementation of AI-driven recommendation systems, highlighting their potential to transform e-commerce interactions. | eng |
dc.language.iso | eng | - |
dc.publisher | Elsevier | - |
dc.relation | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT | - |
dc.relation | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04466%2F2020/PT | - |
dc.relation.ispartof | Procedia Computer Science | - |
dc.rights | openAccess | - |
dc.subject | Artificial Intelligence (AI) | eng |
dc.subject | AI assistant | eng |
dc.subject | Retail business | eng |
dc.subject | E-commerce | eng |
dc.subject | Personalized recommendation systems | eng |
dc.subject | Machine learning | eng |
dc.subject | ChatGPT | eng |
dc.title | ChatGPT based recommendation system for retail shops | eng |
dc.type | conferenceObject | - |
dc.event.title | 2023 International Conference on Industry Sciences and Computer Science Innovation, iSCSi 2023 | - |
dc.event.type | Conferência | pt |
dc.event.location | Lisboa | eng |
dc.event.date | 2023 | - |
dc.pagination | 253 - 260 | - |
dc.peerreviewed | yes | - |
dc.volume | 237 | - |
dc.date.updated | 2025-04-10T09:38:57Z | - |
dc.description.version | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.doi | 10.1016/j.procs.2024.05.103 | - |
dc.subject.fos | Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação | por |
dc.subject.fos | Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | por |
iscte.subject.ods | Indústria, inovação e infraestruturas | por |
iscte.subject.ods | Cidades e comunidades sustentáveis | por |
iscte.subject.ods | Produção e consumo sustentáveis | por |
iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-103342 | - |
iscte.alternateIdentifiers.scopus | 2-s2.0-85195382049 | - |
Aparece nas coleções: | ISTAR-CRI - Comunicações a conferências internacionais |
Ficheiros deste registo:
Ficheiro | Tamanho | Formato | |
---|---|---|---|
conferenceObject_103342.pdf | 881,88 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.