Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/33142
Registo completo
Campo DCValorIdioma
dc.contributor.authorTrigueiros, D.-
dc.contributor.editorKevin Daimi-
dc.contributor.editorAbeer Al Sadoon-
dc.date.accessioned2025-01-24T12:28:07Z-
dc.date.issued2024-08-01-
dc.identifier.citationTrigueiros, D. (2024). The detection of misstated financial reports using XBRL mining and intelligible MLP. In K. Daimi, & A. Al Sadoon (Eds.), Proceedings of the Third International Conference on Innovations in Computing Research (ICR’24). ICR 2024. (Lecture Notes in Networks and Systems, vol 1058, pp. 40-50). Springer. https://doi.org/10.1007/978-3-031-65522-7_4-
dc.identifier.isbn978-3-031-65522-7-
dc.identifier.issn2367-3370-
dc.identifier.urihttp://hdl.handle.net/10071/33142-
dc.description.abstractConsiderable effort has been devoted to the development of integrated software to assist in the detection of financial misstatements. Despite this, the use of such tools has been sparse due to the opacity of the resulting output and the complicated task of importing the financial data they require. This article presents a conceptual framework for modelling financial statements that leads to significantly improved performance, allowing a Multi-layer Perceptron with a modified learning method to form internal representations that can be easily interpreted by financial analysts. The article dis-cusses the use of XBRL data extraction from the web, showing how a judicious selection of accounts can help solving the cumbersome problem of im-porting data. The resulting tool makes the detection of financial misstatements both understandable and easy.eng
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.ispartofProceedings of the Third International Conference on Innovations in Computing Research (ICR’24)-
dc.rightsembargoedAccess-
dc.subjectFinancial misstatementeng
dc.subjectWeb miningeng
dc.subjectXBRLeng
dc.subjectKnowledge extractioneng
dc.subjectMultilayer Perceptroneng
dc.subjectAnálise financeira -- Financial analysiseng
dc.subjectFinancial ratioeng
dc.titleThe detection of misstated financial reports using XBRL mining and intelligible MLPeng
dc.typeconferenceObject-
dc.event.typeConferênciapt
dc.event.locationAthenseng
dc.event.date2024-
dc.pagination40 - 50-
dc.peerreviewedyes-
dc.date.updated2025-01-24T12:24:53Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1007/978-3-031-65522-7_4-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.date.embargo2025-07-31-
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-105084-
iscte.alternateIdentifiers.scopus2-s2.0-85200956441-
Aparece nas coleções:ISTAR-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceObject_105084.pdf
  Restricted Access
326,11 kBAdobe PDFVer/Abrir Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.