Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/33142
Registo completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Trigueiros, D. | - |
dc.contributor.editor | Kevin Daimi | - |
dc.contributor.editor | Abeer Al Sadoon | - |
dc.date.accessioned | 2025-01-24T12:28:07Z | - |
dc.date.issued | 2024-08-01 | - |
dc.identifier.citation | Trigueiros, D. (2024). The detection of misstated financial reports using XBRL mining and intelligible MLP. In K. Daimi, & A. Al Sadoon (Eds.), Proceedings of the Third International Conference on Innovations in Computing Research (ICR’24). ICR 2024. (Lecture Notes in Networks and Systems, vol 1058, pp. 40-50). Springer. https://doi.org/10.1007/978-3-031-65522-7_4 | - |
dc.identifier.isbn | 978-3-031-65522-7 | - |
dc.identifier.issn | 2367-3370 | - |
dc.identifier.uri | http://hdl.handle.net/10071/33142 | - |
dc.description.abstract | Considerable effort has been devoted to the development of integrated software to assist in the detection of financial misstatements. Despite this, the use of such tools has been sparse due to the opacity of the resulting output and the complicated task of importing the financial data they require. This article presents a conceptual framework for modelling financial statements that leads to significantly improved performance, allowing a Multi-layer Perceptron with a modified learning method to form internal representations that can be easily interpreted by financial analysts. The article dis-cusses the use of XBRL data extraction from the web, showing how a judicious selection of accounts can help solving the cumbersome problem of im-porting data. The resulting tool makes the detection of financial misstatements both understandable and easy. | eng |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.relation.ispartof | Proceedings of the Third International Conference on Innovations in Computing Research (ICR’24) | - |
dc.rights | embargoedAccess | - |
dc.subject | Financial misstatement | eng |
dc.subject | Web mining | eng |
dc.subject | XBRL | eng |
dc.subject | Knowledge extraction | eng |
dc.subject | Multilayer Perceptron | eng |
dc.subject | Análise financeira -- Financial analysis | eng |
dc.subject | Financial ratio | eng |
dc.title | The detection of misstated financial reports using XBRL mining and intelligible MLP | eng |
dc.type | conferenceObject | - |
dc.event.type | Conferência | pt |
dc.event.location | Athens | eng |
dc.event.date | 2024 | - |
dc.pagination | 40 - 50 | - |
dc.peerreviewed | yes | - |
dc.date.updated | 2025-01-24T12:24:53Z | - |
dc.description.version | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.doi | 10.1007/978-3-031-65522-7_4 | - |
dc.subject.fos | Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação | por |
dc.date.embargo | 2025-07-31 | - |
iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-105084 | - |
iscte.alternateIdentifiers.scopus | 2-s2.0-85200956441 | - |
Aparece nas coleções: | ISTAR-CRI - Comunicações a conferências internacionais |
Ficheiros deste registo:
Ficheiro | Tamanho | Formato | |
---|---|---|---|
conferenceObject_105084.pdf Restricted Access | 326,11 kB | Adobe PDF | Ver/Abrir Request a copy |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.