Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/29853
Registo completo
Campo DCValorIdioma
dc.contributor.authorNapoli, O. O.-
dc.contributor.authorAlmeida, A. M. de.-
dc.contributor.authorDias, J. M. S.-
dc.contributor.authorRosário, L. B.-
dc.contributor.authorBorin, E.-
dc.contributor.authorBreternitz Jr, M.-
dc.date.accessioned2023-11-29T16:13:33Z-
dc.date.available2023-11-29T16:13:33Z-
dc.date.issued2023-
dc.identifier.citationNapoli, O. O., Almeida, A. M. de., Dias, J. M. S., Rosário, L. B., Borin, E., & Breternitz Jr, M. (2023). Efficient knowledge aggregation methods for weightless neural networks. In Proceedings of the 31th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2023) (pp. 369-374). ESANN. https://doi.org/10.14428/esann/2023.ES2023-123-
dc.identifier.isbn978-2-87587-088-9-
dc.identifier.urihttp://hdl.handle.net/10071/29853-
dc.description.abstractWeightless Neural Networks (WNN) are good candidates for Federated Learning scenarios due to their robustness and computational lightness. In this work, we show that it is possible to aggregate the knowledge of multiple WNNs using more compact data structures, such as Bloom Filters, to reduce the amount of data transferred between devices. Finally, we explore variations of Bloom Filters and found that a particular data-structure, the Count-Min Sketch (CMS), is a good candidate for aggregation. Costing at most 3% of accuracy, CMS can be up to 3x smaller when compared to previous approaches, specially for large datasets.eng
dc.language.isoeng-
dc.publisherESANN-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04466%2F2020/PT-
dc.relation2013/08293-7-
dc.relation314645/2020-9-
dc.relationDSAIPA/AI/0122/2020-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT-
dc.relation404087/2021-3-
dc.relation.ispartofProceedings of the 31th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2023)-
dc.rightsopenAccess-
dc.titleEfficient knowledge aggregation methods for weightless neural networkseng
dc.typeconferenceObject-
dc.event.title31th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2023)-
dc.event.typeConferênciapt
dc.event.locationBruges, Belgiumeng
dc.event.date2023-
dc.pagination369 - 374-
dc.peerreviewedyes-
dc.date.updated2023-11-29T16:11:08Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.14428/esann/2023.ES2023-123-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.subject.odsCidades e comunidades sustentáveispor
iscte.subject.odsProdução e consumo sustentáveispor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-97785-
Aparece nas coleções:ISTAR-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceobject_97785.pdf1,69 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.