Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/28409
Autoria: Lopes, A.
Amaral, B.
Editor: Martinho, R., Rijo, R., Cruz-Cunha, M. M., Domingos, D., and Peres, E.
Data: 2023
Título próprio: A machine learning approach for mapping and accelerating multiple sclerosis research
Volume: 219
Título e volume do livro: Procedia Computer Science
Paginação: 1193 - 1199
Título do evento: CENTERIS – International Conference on ENTERprise Information Systems / ProjMAN – International Conference on Project MANagement / HCist – International Conference on Health and Social Care Information Systems and Technologies 2022
Referência bibliográfica: Lopes, A., & Amaral, B. (2023). A machine learning approach for mapping and accelerating multiple sclerosis research. Procedia Computer Science, 219, 1193-1199. https://doi.org/10.1016/j.procs.2023.01.401
ISSN: 1877-0509
DOI (Digital Object Identifier): 10.1016/j.procs.2023.01.401
Palavras-chave: Machine learning
Recommender systems
Multiple-sclerosis
Artificial intelligence
Research information
Resumo: The medical field, as many others, is overwhelmed with the amount of research-related information available, such as journal papers, conference proceedings and clinical trials. The task of parsing through all this information to keep up to date with the most recent research findings on their area of expertise is especially difficult for practitioners who must also focus on their clinical duties. Recommender systems can help make decisions and provide relevant information on specific matters, such as for these clinical practitioners looking into which research to prioritize. In this paper, we describe the early work on a machine learning approach, which through an intelligent reinforcement learning approach, maps and recommends research information (papers and clinical trials) specifically for multiple sclerosis research. We tested and evaluated several different machine learning algorithms and present which one is the most promising in developing a complete and efficient model for recommending relevant multiple sclerosis research.
Arbitragem científica: yes
Acesso: Acesso Aberto
Aparece nas coleções:IT-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceobject_95406.pdf508,81 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.