Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/27005
Author(s): Sanchez de La Fuente, Catarina de Freitas
Advisor: Ribeiro, Ricardo Daniel Santos Faro Marques
Pereira, Rúben Filipe de Sousa
Date: 16-Dec-2022
Title: Machine and Deep Learning models for house price prediction in United States of America and Portugal
Reference: Sanchez de La Fuente, C. de F. (2022). Machine and Deep Learning models for house price prediction in United States of America and Portugal [Dissertação de mestrado, Iscte - Instituto Universitário de Lisboa]. Repositório Iscte. http://hdl.handle.net/10071/27005
Keywords: House price prediction
Machine learning
Deep learning
Text mining
Preços das casas
Abstract: The present study describes the development process of a system to predict the houses’ prices in Portugal. Two main phases of this process were the data extraction and the comparison among several algorithms. Data Extraction was made through Web Scraping techniques applied the Mais Consultores site [1]. This study used Text Mining methods - Rule-based Matching and Similarity – in order to structure and obtain meaning from the information extracted. Afterwards, this thesis made a comparison among the application of Machine Learning and Deep Learning algorithms: Support Vector Machines (SVM), Decision Tree Regressor (DTR), Random Forest, K-Nearest Neighbour (KNN), Artificial Neural Networks ANN, Convolutional Neural Networks CNN, Recurrent Neural Networks RNN, Multi-layer Perceptron MLP and Long Short-term Memory LSTM Network. Finding this solution was the prime motivation of the present thesis. The results obtained by the used algorithms, both Machine Learning and Deep Learning, demonstrated that the algorithms needed more data for the training set. Additionally, the algorithms with the best results, i.e., with the lesser value of Mean Absolute Error (MAE), Mean Square Error (MSE) and Root Mean Square Error (RSME) and the better score were the Deep Learning algorithms.
A presente estudo utilizou a medotologia CRISP-DM para a caraterização e descrição do processo de desenvolvimento de um sistema para estimação dos preço das casas em Portugal. Duas fases importantes no processo foram: a extração de dados e a comparação entre vários algoritmos. A extração de dados foi realizada através de técnicas de Web Scraping a partir do site Mais Consultores [1]. Utilizaram-se métodos de Text Mining - Rule-based Matching e Similarity – para estruturar e retirar significado da informação que se extraiu do site. De seguida, realizámos a comparação entre a aplicação de algoritmos de Machine Learning e Deep Learning: Support Vector Machines (SVM), Decision Tree Regressor (DTR), Random Forest, K-Nearest Neighbour (KNN), Artificial Neural Networks ANN, Convolutional Neural Networks CNN, Recurrent Neural Networks RNN, Multi-layer Perceptron MLP and Long Short-term Memory LSTM Network. Encontrar esta solução constituiu a principal motivação da presente tese. Os resultados obtidos pelos algoritmos utilizados, tanto os de Machine Learning como os de Deep Learning, demonstram que os algoritmos precisavam de mais dados para treino. Adicionalmente, os algoritmos com melhores resultados, i.e., com menor Mean Absolute Error (MAE), Mean Square Error (MSE) e Root Mean Square Error (RSME) e maior score foram os algorimos de Deep Learning.
Department: Departamento de Ciências e Tecnologias da Informação
Degree: Mestrado em Informática e Gestão
Peerreviewed: yes
Access type: Open Access
Appears in Collections:T&D-DM - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
master_catarina_sanchez_fuente.pdf1,41 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.