Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/26202
Registo completo
Campo DCValorIdioma
dc.contributor.authorRodriguez-Rozas, A.-
dc.contributor.authorAcebron, J.A.-
dc.contributor.authorSpigler, R.-
dc.contributor.editorLuisa Beghin-
dc.contributor.editorFrancesco Mainardi-
dc.contributor.editorRoberto Garrappa-
dc.date.accessioned2022-10-06T09:46:45Z-
dc.date.available2022-10-06T09:46:45Z-
dc.date.issued2021-
dc.identifier.citationRodriguez-Rozas, A., Acebron, J.A., & Spigler, R. (2021). The PDD method for solving linear, nonlinear, and fractional PDEs problems. Em Luisa Beghin, Francesco Mainardi, Roberto Garrappa (Eds.). Nonlocal and fractional operators (pp.239-273). Springer. 10.1007/978-3-030-69236-0_13-
dc.identifier.isbn978-3-030-69235-3-
dc.identifier.urihttp://hdl.handle.net/10071/26202-
dc.description.abstractWe review the Probabilistic Domain Decomposition (PDD) method for the numerical solution of linear and nonlinear Partial Differential Equation (PDE) problems. This Domain Decomposition (DD) method is based on a suitable probabilistic representation of the solution given in the form of an expectation which, in turns, involves the solution of a Stochastic Differential Equation (SDE). While the structure of the SDE depends only upon the corresponding PDE, the expectation also depends upon the boundary data of the problem. The method consists of three stages: (i) only few values of the sought solution are solved by Monte Carlo or Quasi-Monte Carlo at some interfaces; (ii) a continuous approximation of the solution over these interfaces is obtained via interpolation; and (iii) prescribing the previous (partial) solutions as additional Dirichlet boundary conditions, a fully decoupled set of sub-problems is finally solved in parallel. For linear parabolic problems, this is based on the celebrated Feynman-Kac formula, while for semilinear parabolic equations requires a suitable generalization based on branching diffusion processes. In case of semilinear transport equations and the Vlasov-Poisson system, a generalization of the probabilistic representation was also obtained in terms of the Method of Characteristics (characteristic curves). Finally, we present the latest progress towards the extension of the PDD method for nonlocal fractional operators. The algorithm notably improves the scalability of classical algorithms and is suited to massively parallel implementation, enjoying arbitrary scalability and fault tolerance properties. Numerical examples conducted in 1D and 2D, including some for the KPP equation and Plasma Physics, are given.eng
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.ispartofNonlocal and fractional operators-
dc.relation.ispartofseriesSEMA SIMAI Springer Series-
dc.rightsopenAccess-
dc.subjectProbabilistic domain decompositioneng
dc.subjectDomain decomposition methodseng
dc.subjectPartial differential equationseng
dc.subjectMétodo de Monte Carloeng
dc.subjectQuasi-Monte Carloeng
dc.subjectElliptic operatorseng
dc.subjectTransport equationseng
dc.subjectVlasov-Poisson systemeng
dc.subjectNonlocal and fractional operatorseng
dc.titleThe PDD method for solving linear, nonlinear, and fractional PDEs problemseng
dc.typebookPart-
dc.pagination239 - 273-
dc.peerreviewedyes-
dc.date.updated2022-10-06T10:45:20Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1007/978-3-030-69236-0_13-
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-84725-
iscte.alternateIdentifiers.scopus2-s2.0-85112594207-
Aparece nas coleções:IT-CLI - Capítulos de livros internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
bookPart_84725.pdf609,87 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.