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Abstract We review the Probabilistic Domain Decomposition (PDD) method for the numerical solu-
tion of linear and nonlinear Partial Differential Equation (PDE) problems. This Domain Decomposition
(DD) method is based on a suitable probabilistic representation of the solution given in the form of an
expectation which, in turns, involves the solution of a Stochastic Differential Equation (SDE). While the
structure of the SDE depends only upon the corresponding PDE, the expectation also depends upon the
boundary data of the problem.

The method consists of three stages: (i) only few values of the sought solution are solved by Monte
Carlo or Quasi-Monte Carlo at some interfaces; (ii) a continuous approximation of the solution over these
interfaces is obtained via interpolation; and (iii) prescribing the previous (partial) solutions as additional
Dirichlet boundary conditions, a fully decoupled set of sub-problems is finally solved in parallel.

For linear parabolic problems, this is based on the celebrated Feynman-Kac formula, while for semi-
linear parabolic equations requires a suitable generalization based on branching diffusion processes. In
case of semilinear transport equations and the Vlasov-Poisson system, a generalization of the probabilis-
tic representation was also obtained in terms of the Method of Characteristics (characteristic curves).
Finally, we present the latest progress towards the extension of the PDD method for nonlocal fractional
operators.

The algorithm notably improves the scalability of classical algorithms and is suited to massively
parallel implementation, enjoying arbitrary scalability and fault tolerance properties. Numerical examples
conducted in 1D and 2D, including some for the KPP equation and Plasma Physics, are given.
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1 Introduction

Since its introduction in 2005 for numerically solving boundary-value elliptic problems [1], the PDD
(Probabilistic Domain Decomposition) method has been successfully extended by the authors of this
article for solving a wide range of problems described through partial differential equations (PDEs) (see
[8,2–7,14]).

In this article, we review the PDD method highlighting its main developments ([8,14]) and its latest
investigations regarding fractional operators. The class of equations for which method has been applied
include linear elliptic and parabolic equations, the KPP-equation, general semilinear parabolic equations,
linear purely advection-dominated equations, the non-linear Vlasov-Poison system of equations governing
plasma physics, and the Telegraph equation. Applications include all kind of diffusion and advection
problems, finance (Black-Scholes and similar equations), plasma physics, and electrical transmission lines
(see [8,2–7]).

For linear parabolic and elliptic problems defined in Ω ⊆ Rd, this method is based on the celebrated
Feynman-Kac formula, that establishes a connection between the solution of a PDE and a suitable expec-
tation over a corresponding stochastic process driven by Brownian motion, referred to as the stochastic
solution. It exploits such solution to be approximated by the Monte Carlo method only at a few points
along certain Rd−1 interfaces, such that the original domain problem Ω is decomposed into as many
independent subdomain problems as convenient. The result is a domain decomposition technique based
on a probabilistic method that is suited for massively parallel computers, enjoying full scalability and
fault tolerance.

For semilinear problems, the Feynman-Kac formula is generalized to solutions by means of branching
stochastic processes in the real space. For linear and semi-linear hyperbolic problems, the extension of
the Feynam-Kac formula is based on the method of characteristics, where the characteristic curves play a
similar role in the corresponding solution as the stochastic process does for the parabolic problems. In the
case of the Vlasov-Poison system, the stochastic solution is found in the Fourier domain after coupling
the equations. Finally, for fractional PDEs, the method is extended to deal with space-fractional diffusion
equations.

The structure of the article is as follows: First, we give a general introduction of the method when
applied to linear parabolic problems; second, we describe an important extension of the method for
solving general semi-linear parabolic problems; then, we present the extension of the method for transport
problems and the Vlasov-Poisson system of equations; subsequently, we present the latest progress towards
the extension of the PDD method for non-local fractional operators; finally, we conclude the paper with
some remarks and future work.
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2 Linear Parabolic Problems

2.1 Introduction

The purpose of this section is to introduce the PDD method (see [8]) to solve initial- as well as initial-
boundary value problems for linear parabolic differential equations. The linear case is merely considered
here to illustrate in the simplest way the essencial features of the PDD method. Rather unexpectedly,
however, it turned out that even in such case important computational advantages were observed with
respect to some existing more traditional parallel schemes. To assess the computational feasibility of
our algorithm, we compare our results with those obtained using competitive (freely available) parallel
numerical codes, which are widely used by the high-performance scientific community.

The plan of the section is as follows. First, some necessary mathematical generalities are provided.
Then, the algorithm is described and different sources of parallelization are discussed. Later, numerical
examples considering one-dimensional problems are given, where the efficiency of the PDD algorithm is
illustrated. In a short final section, we summarize the salient points of the method.

2.2 Mathematical preliminaries

A variety of phenomena pertaining to Engineering, Physics, and other Sciences, are governed by diffusion
equations. The relations between macroscopic diffusion and the mean statistical effect of the microscopic
random (Brownian) motion of molecules goes back, among the others, to A. Einstein and M. Smolu-
chowski. A connection between “stochastic differential equations”, that can be thought of ordinary differ-
ential equations driven by a certain kind of random noise (Langevin equations), and partial differential
equations, was established.

Inspired by the work of R. Feynman on “path integrals” in quantum physics, M. Kac realized that a
similar formulation could be applied to obtain a representation of the solution to the heat equation and
to other diffusive (parabolic) linear partial differential equations. This lead to the so-called Feynman-Kac
formula. Let u(x, t) be a bounded function satisfying the Cauchy problem for the linear parabolic partial
differential equation,

∂u

∂t
= Lu− c(x, t)u, u(x, 0) = f(x), (1)

where x ∈ Rn, L is a linear elliptic operator, say L := aij(x, t)∂i∂j + bi(x, t)∂i (using the summation
convention), with continuous bounded coefficients, c(x, t) ≥ 0 and continuous bounded initial condition,
f(x). The probabilistic representation of the solution u to Eq. (1) is given through the Feynman-Kac
formula

u(x, t) = E
[
f(β(t)) e−

∫ t
0
c(β(s),t−s)ds

]
, (2)

see [30,34], e.g., where β(·) is the n-dimensional stochastic process starting at (x, 0), associated to the
operator L, and the expected values are taken with respect to the corresponding measure. When L is
the n-dimensional Laplace operator, β(·) reduces to the standard n-dimensional Brownian motion, and
the measure reduces to the Gaussian measure. In general, the stochastic process β(·) is the solution of a
system of stochastic differential equations (SDEs) of the Itô type, related to the elliptic operator in (1),

dβ = b(x, t) dt+ σ(x, t) dW(t). (3)
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Here W(t) represents the n-dimensional standard Brownian motion (or Wiener process); see [34,10],
e.g., for generalities, and [37] for related numerical treatments. As is known, the solution to (3) is a
n-dimensional stochastic process, β(t, ω), where ω, usually not indicated explicitly in probability theory,
denotes the “chance variable”, which ranges on an underlying abstract probability space. The drift vector,
b, and the diffusion matrix, σ, in (3), are related to the coefficients of the elliptic operator in (1) by
b = (b1, . . . , bn)

T , and σσT = a, with σ = {σij}i,j=1,...,n, a = {aij}i,j=1,...,n.

The representation in Eq. (58) can be generalized to deal with problems on bounded domains, say
Ω ⊂ Rn, where given boundary data u(x, t)|x∈∂Ω = g(x, t) of the Dirichlet type are prescribed. Thus,
the following representation holds, for the solution of the problem, being now continuous and bounded
on Ω × [0, T ],

u(x, t) = E
[
f(β(t)) e−

∫ t
0
c(β(s),t−s)ds1[τ∂Ω>t]

]
+E

[
g(β(τ∂Ω), τ∂Ω) e−

∫ τ∂Ω
0 c(β(s),t−s)ds1[τ∂Ω<t]

]
. (4)

Here τ∂Ω denotes the first exit (or hitting) time of the path β(·), started at (x, t), when ∂Ω is crossed,
and 1[τ>t] is the characteristic function, which takes the value 1 or 0, depending whether τ∂Ω is or is not
greater than t.

The solution to the linear inhomogeneous problem

∂u

∂t
= Lu− c(x, t)u+ F (x, t), (5)

where F (x, t) is a bounded continuous function of x and t, can also be represented probabilistically,
using the related Green function, which, in turn, can be represented as above, being the solution to the
associated homogeneous problem (e.g., see [3,4]).

2.3 The numerical method

The algorithm consists of three steps. To illustrate how it works, in Fig. 1 a sketchy diagram is plotted
where such steps are shown for a two-dimensional problem. The first step consist in computing the
solution at a few points by a probabilistic Monte Carlo-type method, based on averaging over certain
random paths. This is done on some chosen interfaces, located inside the space-time domain D := Ω ×
[0, T ], where Ω ⊂ Rn. In the following, such interfaces are obtained, for simplicity, partitioning the
domain into subdomains as Di := [xi−1, xi] × Ω0 × [0, T ], being Ω0 ⊂ Rn−1. For instance, in R2

this corresponds to divide the domain in slices where the interfaces are parallel to y-axis. For complex
domains, a proper partitioning algorithm may be employed to define such interfaces. Once the solution has
been computed, the second step is interpolating on such points, considered as interpolation nodes, thus
obtaining continuous approximations of interfacial values of the solution. The third step, finally, consists
in computing the solution inside each subdomain, which task can be assigned to separate processors.
This can be realized resorting to local solvers, which may use classical numerical methods, such as finite
differences or finite elements methods.
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Fig. 1 A sketchy diagram illustrating the main steps of the algorithm in 2D: The figure on the left shows how the
domain decomposition is done in practice. The figure on the right shows the points where the solution is computed
probabilistically; these are used afterwards as nodal points for interpolation.

2.3.1 Probabilistic part

The purpose of this step is to compute the sought solution at a few single points, inside the space-time
domain. Computing the solution at a high number of points so as to cover a full computational domain is
also possible but is exceedingly expensive, even though this approach could be pursued when the number
of the available processors is extremely high. This can be done assigning the task of computing the solution
at a set of points to different processors. The Monte Carlo method is, in fact, capable of fully exploiting
massively parallel architectures. Moreover, it is scalable to an arbitrary number of processors as well as
naturally fault tolerant.

When the parabolic equations are linear, a given number of random paths have to be generated, which
obey the SDE in (3), tracking them until they either touch the boundary for the first time or else reach
a prescribed final time, t. The former case occurs in initial-boundary value problems (e.g., with Dirichlet
boundary conditions), while the latter case occurs in both a purely initial value problem, and a initial-
boundary value problems. The solution to the equation at a given point, (x, t), can then be obtained
by means of the Feymann-Kac formula in (4) or (58). In practice, the expected value is replaced by an
arithmetic mean, since we must deal with a finite sample size, N . An alternative strategy to evaluate
the solution was proposed in [43] for initial-boundary problems, which requires generating a random
exponential time, S, obeying the probability density P (S) = c exp (−cS) for every random path. Then,
depending on whether S < t or not, the given path β(t), contributes or not to the solution. Therefore,
the solution is computed as

u(x, t) = E[f(β(t))]. (6)

In practice, the expected value above must be replaced necessarily by a finite sum, and moreover the
stochastic paths are actually simulated resorting to suitable numerical schemes. Thus, approximately,

u(x, t) =
1

N

N∑
j=1

f(β∗
j (t)), (7)

where N is the sample size, and β∗ is the stochastic path with discretized time. Such a discretization
procedure unavoidably introduces two sources of numerical error. The first one is the pure Monte Carlo
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statistical error, which it is known to be of order O(1/
√
N) when N goes to infinity. The second error

is due to the fact that the ideal stochastic path, βj(·), has to be approximated, discretizing time, by
some numerical scheme yielding the paths β∗

j (·). The truncation error made in solving numerically the
stochastic differential equation (3), obviously depends on the specific scheme chosen, see [37], e.g. Among
these are the Euler scheme, which was used here to simulate numerically Eq. (3). Such scheme is well
known to have a truncation error of order O(∆tα), where α = 1/2 or α = 1, understood in the “strong”
or “weak” sense, respectively [37].

For the case of a boundary-value problems, a new source of numerical error should be taken into
account. In fact, for the purpose of illustration let us consider the Dirichlet problem for the one-dimensional
heat equation, in presence of a constant sink term, c > 0,

∂u

∂t
=

∂2u

∂x2
− cu, a < x < b, t > 0

u(a, t) = 0, u(b, t) = 0

u(x, 0) = f(x). (8)

The solution can be computed as

u(x, t) =
1

N

N∑
j=1

f(β∗
j (t))1[Sj>τΩ ]. (9)

In Fig. 2, we sketched the three possible scenarios the random paths β∗
j (t) can undergo. Note that

for the random paths of the type labelled with (3) in Fig. 2, it is required to evaluate precisely the first
exit time out of the boundary. Such a task is however by far nontrivial, since τ∂Ω , in general, will be
estimated numerically, and hence will be affected by numerical errors. Indeed, numerical experiments
show that the error in estimating it may dominate over the other sources of numerical errors, and is
therefore of paramount importance to assess accurately such a quantity.

Fig. 2 The three possible scenarios for a random path, for the one-dimensional problem in (8). In (1), the random
time is greater than the final time, T ; in (2), the random time turns out to be smaller than T ; in (3), the first exit
time is smaller than both the random and the final time.
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In practice, the probability that a given approximate path exits the boundary between two consecutive
time steps, is nonzero, and then it is possible that the true exit time might be systematically overestimated.
This circumstance has been pointed out in several occasions, see, e.g., [48,12,42].

In [31], it was estimated that, due to the presence of boundaries, the weak convergence of the naive
Euler scheme in evaluating (9) is reduced to O(∆t1/2), being ∆t the time step used in solving numerically
the SDE (3). To reduce such an error (ideally, to recover the convergence order achieved in the absence
of boundaries), it becomes crucial to evaluate accurately the first exit time, adopting suitable numerical
strategies.

Among the various possibilities considered in the literature, we chose to implement that proposed in
[39] for one-dimensional problems, which is based on a theoretical approximation of the exit probability.
To solve two-dimensional problems on the square, the value of the exit probability on Ω has been taken as
the maximum among the four hitting probabilities that a trajectory first exits the four possible boundary-
sides. This consists on an approximation of the true two-dimensional exit probability, but it suffices in
order to achieve a numerical error now well below the statistical error.

In fact, for general n−dimensional diffusion processes, there exist other interesting alternatives to
approximate the first exit time. In [18,42], Buchmann and Petersen presented an algorithm to simulate
stopping diffusion processes to obtain again weak order one using the Euler scheme. More recently,
Gobet and Menozzi proposed in [32] a new simpler and computationally more efficient approach, of weak
order o(∆t1/2). The idea consists of stopping the simulation of discrete paths generated by means of
the Euler scheme, when such paths exit through a conveniently modified domain, shrinking (or shifting)
the boundary of Ω in the direction of the inward normal. The amplitude of such shrinking (or shifting)
depends on, among other values, the diffusion coefficient of the process and the square root of the time
step used in the numerical scheme. Given the general applicability and simplicity of this approach, it is
specially convenient when dealing with more complex geometries.

As mentioned before, for the linear case, in order to evaluate the probabilistic representation we
resort to numerical simulations of the Monte Carlo type, considering a finite size sample, N . In practice,
we replace the expected value with an arithmetic mean, which is known to provide the best unbiased
estimator [33]. The error made in doing so is statistical in nature and of the order of N−1/2.

Finally, a carefully analysis of the computational cost associated to this part of the algorithm is
provided in the next section, when dealing with general semilinear problems.

2.3.2 Interpolation in space-time

Let assume that we have already computed the values of the sought solution at some points on the
interfaces x = xi, by the previous Monte Carlo approach. These are the points (xi,yj , tk), where
yj ∈ Ω0 ⊂ Rn−1, for every fixed i, and very few j’s and k’s. A number of numerical schemes can
be adopted to interpolate in the n−1 dimensional space Ω0. The simplest method of obtaining multivari-
ate interpolation is to consider a univariate method and derive from it a multivariate method by tensor
product. In practice, given n − 1 set of points, the tensor product interpolation finds the corresponding
interpolation coefficients solving repeatedly univariate interpolation problems as described in [25]. For
the one-dimensional examples given in this section we used the Chebyshev polynomials, while for two-
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dimensional examples, a tensor product interpolation based on cubic splines was adopted [9]. Here the
nodal points are uniformly distributed on Ω0, and a not-a-knot condition has been imposed, which means
imposing continuity of the third derivative at the boundary. When the number of nodal points, n, is the
same along each dimension, interpolating at a single point (yj , tk) requires n + 1 spline calculations to
obtain the spline coefficients, and then evaluating the spline value at n + 1 points. The computational
cost for calculating the spline coefficients is known to be of order O(n), while for evaluating the spline
value it is O(logn). The interpolation error when the interpolating function is sufficiently smooth (C8 at
least) is of order of O(h4 + l4) [46], where h and l are the widths of the interpolating grid in the y and t

axes, respectively.

2.3.3 Local solver

Once that continuous interfacial approximations of the solution have been obtained upon interpolation on
the previously computed nodes (by Monte Carlo), we can solve the original problem on each subdomain,
Di, independently of each other, since a full decoupling has been realized. Hence, the numerical treatment
on each subdomain can be accomplished by a local solver, which can also be different from all the others.
In the numerical examples below, we used a solver based on the LU factorization.

2.3.4 Sources of parallelization

We stress that in practice there are three sources of parallelization, namely (1) the Monte Carlo generation
of internal node functional values (even each single sample can be ran on independent processors), (2) the
interpolation part (the interpolation on each interface can be accomplished independently), and (3) the
domain decomposition solution (that can be assigned to independent local solver). Moreover, each of such
three stages enjoyed a natural fault tolerant property: (1) if a number of processors fail in the Monte Carlo
simulations, it will be enough to ignore the result from them using the remaining samples. Hence, at a price
of a small additional errors, the algorithm will still provide meaningful results. (2) Failure of processors
computing interpolated values of the solution on some interfaces may only imply to neglect, temporarily,
the solution on those subdomains having such interfaces as part of their boundary. (3) Failure of processors
responsible for the numerical solution on some sub-domains can also be temporarily neglected, while the
solution computed by the local solvers on the remaining sub-domains will be computed correctly. Note
that on the interfaces and on the sub-domains where the processors failed, the solution can be computed
restarting again the algorithm.

For numerical examples, see [3].

2.4 Summary

We have described the PDD algorithm for solving linear parabolic partial differential equations in any
space dimension, where a domain decomposition approach is used to split the given space-time domain
into as many subdomains as the number of available processors. The solution at the interfaces that sep-
arates the subdomains are computed after interpolating on the nodal points for which the solution is
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previously obtained probabilistically via Monte Carlo. Such probabilistic computation consists of evalu-
ating averages on suitably generated random paths, without the need of deploying a computational mesh.
Moreover, every available processor is devoted to compute the solution at one of such interfaces, without
introducing communication nor synchronization among other processors. This fact is of paramount im-
portance, because once the solution on the interfaces has been independently computed, fully in parallel,
the remaining task of evaluating the solution inside each subdomain turns out to be totally independent
as well, resulting in a complete, communication- and synchronization-free, fully scalable algorithm.

3 Semilinear Parabolic Problems

3.1 Introduction

Probabilistic representations do exist for some elementary semilinear parabolic equations. Indeed, in [38]
H.P. McKean derived the representation formula

u(x, t) = E[

kt(ω)∏
i=1

f(xi(ω, t))] (10)

for the KPP equation
ut = uxx + u(u− 1), x ∈ R, t > 0, (11)

subject to the initial value u(x, 0) = f(x) (see also [30,40,44]), where kt(ω) represents a time-dependent
random variable that accounts for the number of branches of the underlying branching diffusion process.
Later, we have found a similar representation (see also [3,4]) for the solution of a more general semilinear
parabolic problem, given by

∂u

∂t
= Lu− cu+

m∑
j=2

αju
j , (12)

where L is a general linear elliptic operator, say L := aij(x, t)∂i∂j + bi(x, t)∂i, with continuous bounded
coefficients, m ≥ 2 is an integer, αj ≥ 0,

∑m
j=2 αj = 1, and c is a positive constant. Such a representation

is based on generating branching diffusion processes, associated with the elliptic operator in Eq. (12), and
governed by an exponential random time, S, with probability density p(S) = c exp(−cS).

In this section, we explain how the probabilistic representation was extended to deal with a wider
class of semilinear parabolic problems (see also [5]), whose general form is given by

∂u

∂t
= Lu+ f(u, x, t), x ∈ Rn, t > 0 (13)

u(x, 0) = g(x),

where
f(u, x, t) =

m∑
j=2

cj(x, t)u
j ,

where the cj(x, t) are continuous given functions. It is worth to observe that this generalizes further the
previous representation in (12), explained in [3,4], since it accounts for the following aspects: A constant
potential term such as −cu is not required anymore; the coefficients multiplying the nonlinear terms,
cj(x, t), can be chosen arbitrarily, hence overcoming the constraint imposed in the previous representation
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consisting in
∑m

j=2 cj(x, t) = 1, and finally the initial data g(x) may now be chosen negative, or greater
than 1.

Here it is the outline of the section. First, the generalized probabilistic representation is presented.
Then, a qualitative study of the numerical errors is accomplished analyzing a few relevant test examples.
Later, some numerical examples are shown, where the high efficiency of the PDD method comparing with
classical methods is illustrated. Finally, we summarize the more relevant findings to close the applicability
of the PDD method to parabolic problems.

3.2 A generalized probabilistic representation for semilinear parabolic problems

In order to generalize the class of parabolic problems amenable to a probabilistic representation in terms
of branching diffusion processes, it becomes more convenient to rewrite Eq.(13) in an integral form. This
can be done readily resorting to the Duhamel principle [26] for inhomogeneous initial-value parabolic
problems, and yields

u(x, t) =

∫
Rn

dy g(y) p(x, t, y, 0) +

∫ t

0

∫
Rn

ds dy f(u(y, s), y, s) p(x, t, y, s), (14)

where p(x, t, y, τ) is the associated Green’s function, satisfying the equation
∂p

∂t
= Lp, x ∈ Rn, t > τ

p(x, τ, y, τ) = δ(x− y). (15)

The main difference with the previous representation obtained in (12) rests on the absence of the
constant potential term −cu(x, t). Such a term was crucial, since it allowed to obtain a probabilistic
representation based on generating branching diffusion processes governed by an exponential random
time, S, with density probability p(S) = c exp(−cS) (see previous sections, and [3,4]). In the following
we describe the main strategy derived in [5] (referred to as Strategy B), capable to overcome such a
constraint generalizing further the aforementioned representation.

3.2.1 Probabilistic representation

A way to obtaining a probabilistic representation for the problem in Eq. (13) consists in sampling both
terms of the integral equation (14), by introducing a two-point discrete random variable ξ taking the
values 0, and 1 with probability P (0) = q, P (1) = 1 − q. Therefore, the integral equation (14) can be
rewritten as follows,

u(x, t) = q

∫
Ω

dy g̃(y) p(x, t, y, 0)

+ (1− q)

∫ t

0

∫
Ω

ds dy
m∑

j=2

c̃j(y, t− s)uj(y, t− s) p(x, s, y, 0), (16)

where g̃(x) = g(x)/q, and c̃j(x, t) = cj(x, t)/(1 − q). The probabilistic representation can be readily
found and has the form

u(x, t) = E [g̃(β(t))δ(ξ)]

+ E
[
η(t)c̃′α(β(tS), t(1− S))uα(β(tS), t(1− S))δ(ξ − 1)

]
, (17)
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where the expectation is given by the measure generated by the following random variables: the diffusion
processes βi(·), the time S, a random time uniformly distributed; and α, a discrete random variable taking
on the values between 2 and m with equal probability p = 1/(m− 1), c̃′α = (m− 1)c̃α, and η(t) = t. The
equation above is not in a closed-form but it can be recursively expanded, to yield

u(x, t) = E [g̃(x0(t)) δ(ξ0)]

+E

[
η(t)c̃′α1

(y1(tS0), t(1− S0))

α1∏
i=1

g̃(xi(t(1− S0)) δ(ξi)δ(ξ0 − 1)

]
+E

[
η(t)η(t(1− S0))c̃

′
α1

(y1(tS0), t(1− S0))

× c̃′α2
(y2(t(1− S0)S1), t(1− S0)(1− S1))

α1∏
i=2

g(xi(t(1− S0)))) δ(ξi)

×
α1+α2+1∏
j=α1+1

g(xj(t(1− S0)(1− S1)))δ(ξj)δ(ξ1 − 1)δ(ξ0 − 1)

+ · · · , (18)

where xi and yj corresponds to the position of the i-th branch at the final time t and the position of the
j-th splitting event, respectively.

While in Eq. (17) the expectation is taken with respect to the measures generated by β, ξ and
α (which would be enough if consisted of a closed-form), the expectation in Eq. (18) is rather taken
from the underlying measure corresponding to β (i.e., by xi and yi), again, and the infinite sequence of
random variables ξ0, ξ1, ..., and α1, α2, ..., that the determine the final configuration of every random tree
generated.

Therefore, as we illustrate next, this solution can be obtained as the expectation over suitable random
trees of a given multiplicative functional of the initial condition, being given now as follows:

u(x, t) = E

Ne(ω)∏
i=1

η(tS̄i(ω))cαi(ω)(yi(ω), tS̄i(ω))

k(ω)∏
l=1

g(xl)

 . (19)

Here k(ω) and Ne(ω) are random variables that represents the number of branches at final time t, and
the number of splitting events obtained when generating a particular random tree, respectively. Note that
P{Ne(w) = i} = (1/2)i. In [4], it is shown that P (k,m), the probability of finding a random tree with
k branches, being m the number of children, is given by

P (k,m) = qk(1− q)Ne 1

mNe+ 1

mNe+ 1

Ne

 . (20)

By S̄ we denote the corresponding global random time obtained by summing conveniently the random
times Si according to the specific structure of the generated random tree. It is worth to observe that
such trees are used as a tool to construct the structure representing a given partial contribution to the
solution, allowing afterward to follow easily how the arguments of the functions are exchanged when
solving recursively Eq.(17).

To illustrate how this representation can be implemented in practice for solving a particular problem,
let consider the following equation,

∂u

∂t
=

∂2u

∂x2
+ u2, x ∈ R, t > 0 (21)

u(x, 0) = f(x). (22)
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From Eq. (17), the probabilistic representation is given by

u(x, t) = E [g̃(β(t))δ(ξ)] + E
[
η(t)u2(β(tS), t(1− S))δ(ξ − 1)

]
, (23)

or in a more compact format, using Eq.(19) for the expectation value over random trees of a given
multiplicative functional in Eq.(23), by

u(x, t) = E

Ne(ω)∏
i=1

η(tS̄i(ω))

k(ω)∏
l=1

g(xl)

 . (24)

Every random tree is built generating a sequence of interconnected binary random variables, ξi, branching
off from the previous one as follows: Let ξ1 the random variable associated to the root of the tree. Only
when ξ1 takes value 1 with probability P (1) = 1 − q, two new random variables denoted by ξ2,3 (child
nodes of the root), are created. These new variables proceed further creating other nodes governed by
the same rule, until no random number ξi takes anymore the value 1. At this point the procedure is
concluded, giving rise to a random tree characterized by k branches or leaves, and Ne splitting events.

The nodes of the tree are labeled in binary format according to their ancestors as follows: A given
node with label [a0a1a2...aN ], where ai = 0, 1, is connected to the set of nodes {[a0], [a0a1], [a0a1a2], . . . ,
[a0a1a2 · · · aN−1]}. The global time random variable S̄ associated to a given tree with k branches is given
by

S̄ =

2k−1−1∏
i=1

S
γj

j , γl =

2k−1−1∑
j=l+1

νj ⟨j|l⟩ , l = 1, . . . , 2k−1 − 1 (25)

where νl is 0, or 1 depending on whether the tree contains or not the node l. The function ⟨·|·⟩ is defined
as follows,

⟨j|l⟩ :=

 1 if T [l]
j = l

0 otherwise.
, (26)

where both, j and l are numbers written in binary format, and T
[l]
j is an operator that truncates

the number j to their most significant [l] digits, where [l] is the number of digits of l. By example, let
j = [a0a1a2...aN ], then T

[l]
j = [a0a1...a[l]−1].

Figure 3 shows the different random trees obtained with k = 4, and Ne = 3, and their corresponding
labels according to the rule defined above.

Finally, note that in practice, a series arises when evaluating the solution of Eq. (18) by Monte
Carlo, when attempting to summing up the partial contribution of trees of different branches. This series
is infinite but in practice, we always end up with a finite series because the probability of obtaining
trees with an increasing number of branches is increasingly smaller and therefore, their contribution is
negligible up to defining a tolerance for the numerical error. In the case of asymptotic divergent series that
may appear, we resort to approximation techniques such as the Padé approach [13,11], to approximate
conveniently the sum of the aymptotic series. In this method, called Padé approximation, the idea is to
replace the asymptotic divergent power series by a sequence of rational functions converging towards the
solution u, as follows: Each rational function, PN

M , given as a ratio of two polynomials of degree N and
M, is constructed such that the first N +M + 1 terms of its series expansion match the first M +N + 1

terms of the divergent power series. The hope is that PN
M → u as N,M → ∞.

For the computational complexity and numerical results, we refer to the reader to [4].
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Fig. 3 Configuration diagram for the case of 4 branches and 3 splitting events. Here Si is a random time uniformly
distributed between the previous generated time, and the final time, T . The corresponding labels i of the random
time Si are defined according to the rule explained in the text.

3.3 Summary

The class of semilinear parabolic problems amenable to a probabilistic solution was expanded by intro-
ducing suitable generalized random trees. The probabilistic computation consists of evaluating averages
on the generated random tree, which plays a role similar to that of a random path in linear problems.
The new representation allows treatment of semilinear problems without a potential term, with arbitrary
coefficients multiplying the nonlinear term, and arbitrary initial data, including negative definite and
greater than one. The implementation requires computing the solution through a series where the coef-
ficients represent the partial contribution to the solution coming from generated random trees with any
number of branches. Summation of divergent asymptotic series expansions cannot be summed simply by
a sequence of partial sums. Nevertheless, numerical experiments show that (see [4], in many cases, the
asymptotic series can be approximated quite accurately by the Padé approximant ([13,11]).

The new probabilistic representation has been used successfully as a crucial element for implementing
a suitable probabilistic domain decomposition method. In fact, at the time when these simulations were
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conducted, numerical examples showed the excellent scalability properties of the PDD algorithm in large-
scale simulations, where up to 512 processors were used on a high performance supercomputer.

4 The Vlasov-Poisson system for Plasma Physics

4.1 Introduction

To illustrate the potentiality behind these probabilistic techniques for solving numerically transport equa-
tions, in this section the method is particularized to the Vlasov-Poisson system of equations. We have
considered merely periodic boundary conditions in space. This has been done for simplifying as much as
possible the probabilistic representation of the solution, and thus to help the reader to understand easily
such a representation. It is theoretically well-known [34,40], that dealing with general boundary condi-
tions requires estimating various stochastic quantities, which in turn introduces new sources of numerical
errors, that we tried to avoid at this stage. The ultimate goal of this section is to show the feasibility of
this method as a complementary method capable to speed up the Vlasov-Poisson simulations in a parallel
environment, and this was done simplifying the nature of the boundary data as much as possible. The
generalization of the method to situations where more complicated geometries and boundary conditions
are imposed, is left for a future work.

Being the boundary conditions periodic in space, it becomes natural to solve numerically the problem
in Fourier space for the spatial coordinates. Moreover, it turns out that for dealing accurately with the
filamentation phenomenon, it is convenient to analyze also the problem in Fourier space for velocities [28].
That is why in practice the numerical method to be presented in this section is fully analyzed in Fourier
space. Apart from such a mathematical reason, in some practical experimental situations one could be
interested not to know the distribution function, but rather the spectrum energy or any other related
quantities, being therefore natural to investigate the problem in Fourier space. Furthermore, while the
probabilistic representation introduced in this section was obtained in Fourier space, there already exists
representations in configuration space [50], which may potentially be used to generalize further what has
been done in this section.

This section is organized as follows. Sec. 4.2 concerns the probabilistic representation for the Vlasov-
Poisson system of equations. Here such a representation is derived in the Fourier space for arbitrary
dimensions, and the validation of the representation is done analyzing the classical linear Landau damping.
In Sec. 4.3, it is explained how the probabilistic representation can be used in practice, and which are
the associated numerical errors. First the algorithm is described, and analyzed the numerical error, then
the computational cost is estimated, and finally several numerical tests consisting in typical problems
considered often in the literature are given, focusing in both, the accuracy and performance of the method.
To conclude we summarize the main results and discuss potential directions for future research.

4.2 Probabilistic representation for the Vlasov-Poisson system

The Vlasov-Poisson system describes the temporal evolution of charged particles subject to the self-
generated electric field created by the charged particles inside the plasma. It is actually a system of
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equations, consisting of a kinetic equation, the Vlasov equation which describes the transport of charged
particles, along with the classical Poisson equation for electrostatic potential. The solution of the equation
is the distribution function of particles in the phase space, where the independent variables are space, x,
velocity, v, and time t. Consider the two-species Vlasov-Poisson equation in d dimensions conveniently
adimensionalized,

∂f (1)

∂t
+ v̄ · ∇x̄f

(1) −∇ϕ · ∇v̄f
(1) = 0,

∂f (2)

∂t
+ v̄ · ∇x̄f

(2) +
1

m2
∇ϕ · ∇v̄f

(2) = 0,

△x̄ϕ = −
[∫

f (1)dv̄ −
∫

f (2)dv̄

]
, (27)

along with a 2π-periodic boundary condition for the space variables, f (i)(x̄, v̄, t) = f (i)(x̄ + 2π, v̄, t),
decay to zero as |v̄| → ∞ with sufficiently high rate for velocity variables, and suitable initial conditions
for both, f (i), and the space average over a period of the electric field Ē = −∇ϕ. In [36] it has been
proved that in order the Vlasov-Poisson equations provide a complete description of the plasma, such a
quantity should be kept fixed to zero for all time. Finally, being f (i) a density probability, it holds that∫ 2π

0

∫∞
−∞ dx̄ dv̄ f (i) = 1.

Since the prescribed boundary condition for space variables are periodic, it is more natural to analyze
the problem in Fourier space. Moreover, it turns out to be more convenient to transform as well to the
Fourier space for velocities, in order to mitigate the well known filamentation effect in velocity space
observed in the solution for sufficiently long times [28]. Because of the periodicity in the space variables,
the transformation in space is discrete, while for velocities is continuous. Then, transforming Eq. (27),
yields

∂F
(1)

k̄

∂t
− k̄ · ∇ξ̄F

(1)

k̄
− k̄ · ξ̄ ϕ̂k̄ ∗ F (1)

k̄
= 0,

∂F
(2)

k̄

∂t
− k̄ · ∇ξ̄F

(2)

k̄
+

1

m2
k̄ · ξ̄ϕ̂k̄ ∗ F (2)

k̄
= 0,

−|k̄|2ϕ̂ = −
[
F

(1)

k̄
(0, t)− F

(2)

k̄
(0, t)

]
, |k̄| ̸= 0, (28)

where

F
(i)

k̄
(ξ̄, t) =

∫
Rd

dv̄

∫ 2π

0

dx̄ e−iξ̄·v̄e−ik̄·x̄f (i)(x̄, v̄, t), i = 1, 2, (29)

ϕ̂k̄(t) =

∫ 2π

0

dx̄ e−ik̄·x̄ϕ(x̄, t). (30)

Here k̄, and ξ corresponds to the conjugate variables of x̄, and v̄, respectively, being k̄ a discrete variable,
while ξ is continuous, and ∗ denotes the convolution operator for k̄. Note that passing to the Fourier
space becomes crucial to be able to reduce the system of equations into a single one. Moreover, this is
mandatory for the purpose of finding a probabilistic representation for the solution of Eqs. (27), applying
directly the strategy described in [6] for the semilinear transport equation. The first step towards the
probabilistic representation requires rewriting the system of equations (28) in integral form, and is given
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by

F
(i)

k̄
(ξ̄, t) = F

(i)

k̄
(ξ̄ + tk̄, 0) + ρi

∫ t

0

ds
∞∑

k̄′=−∞
k̄′ ̸=0

k̄′ · (ξ̄ + sk̄)

|k̄′|2

×[F
(1)

k̄′ (0, t− s)− F
(2)

k̄′ (0, t− s)]F
(i)

k̄−k̄′(ξ̄ + sk̄, t− s), (31)

where ρ1 = 1, and ρ2 = −1/m2. Both, the static and dynamic probabilistic representation can be derived
similarly to the case of the semilinear transport equation. Here we describe the dynamic representation,
since the static one is straightforward. Eq. (31) can be written probabilistically as follows,

F
(i)

k̄
(ξ̄, t) = E

[
F̃

(i)

k̄
(ξ̄ + tk̄, 0)δ(ζ)

]
(32)

+E
[
η(t) g(i)(k̄, k̄′, ξ̄, S)F

(1)

k̄′ (0, t− S)F
(i)

k̄−k̄′(ξ̄ + Sk̄, t− S)δ(ρ− 1)δ(ζ − 1)
]

+E
[
η(t)g(i)(k̄, k̄′, ξ̄, S)F

(2)

k̄′ (0, t− S)F
(i)

k̄−k̄′(ξ̄ + Sk̄, t− S)δ(ρ− 2)δ(ζ − 1)
]
,

where

g(1)(k̄, k̄′, ξ̄, S) = 2ρ1
k̄′ · (ξ̄ + Sk̄)

(1− q)p(k̄)|k̄′|2
,

g(2)(k̄, k̄′, ξ̄, S) = −2ρ1
k̄′ · (ξ̄ + Sk̄)

(1− q)p(k̄)|k̄′|2
, (33)

and F̃
(i)

k̄
= F

(i)

k̄
/q. Here four random variables have been introduced, those are: ρ is a two-point, ρ =

1, 2, discrete random variable equally distributed with probability 1/2; S a continuous random variable
uniformly distributed between 0 and t, and therefore η(t) = t; k̄′ is a discrete random variable with density
probability p(k̄′), and finally ζ, which takes the values 0, and 1, with probability P (0) = q, P (1) = 1− q,
respectively. E denotes the expected value taken with respect to the density probabilities corresponding
to all those four random variables.

In [29], the authors proposed a probabilistic representation of the solution of the system in (27).
However, such a representation is rather stringent for practical purposes, since it requires to fulfill strong
constraints in terms of the allowed initial data and time. Moreover, the density probability p(k̄′) should
be carefully chosen, hindering the task of finding a valid density for any dimension. This is related to
the problem of finding admissible majorizing kernels, see [15]. Indeed, it can be readily proved that
the majorizing kernel chosen in [29] is no longer valid in one dimensional problems. However, this does
not mean that no solution can be found for the system of equations (27), but rather that the numerical
method based on such a probabilistic representation gives rise to a divergent series, which requires further
numerical treatment. In fact, in this section we show that relaxing the requirements concerning the initial
condition and time, the solution is still smooth, and as explained in the previous section, we resort to
Padé approximant [13,11] for approximating the asymptotic expansion of the solution given as divergent
series. Since the density probability p(k̄′) can now be chosen freely among a suitable class of functions,
this can be used to reduce the statistical error done computing numerically the solution. Typically, this
corresponds to the well known variance reduction techniques often used in Monte Carlo simulations.

Note that Eq.(32) is indeed a probabilistic representation of the Vlasov-Poisson system of equations
(in the sense defined previously for the transport equations), and therefore, it can be used for computing
the solution at a single point (k̄, ξ̄, t), without the need of any computational mesh. This can be done
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generating suitable random trees governed by the densities probabilities mentioned above, and taking
the expected value of a corresponding multiplicative functional. For a numerical purpose, the associated
numerical algorithm turns out to be specially costly for computing the solution in the whole computational
domain, since a large sample size is typically required to avoid a large statistical error. However, an
alternative does exist, and this will be addressed in Sec. 4.3.

4.2.1 Validation of the representation for the linear theory

In order to validate analytically the probabilistic representation derived above, we consider the classical
linear Landau damping. This will be done linearizing conveniently the system (27) around the equilibrium
solution. Let look for a density function according to the Ansatz

f (i)(x̄, v̄, t) = f
(i)
0 (v̄) + ε f

(i)
1 (x̄, v̄, t) +O(ε2),

ϕ(x̄, t) = ϕ0 + ε ϕ1(x̄, t) +O(ε2), (34)

where ε ≪ 1. Note that ϕ0 is intentionally set to be constant to satisfy the constraint mentioned above
concerning the space average over a period of the electric field. Inserting (34) into (27), we obtain to order
ε

∂f
(1)
1

∂t
+ v̄ · ∇x̄f

(1)
1 −∇ϕ1 · ∇v̄f

(1)
0 = 0,

∂f
(2)
1

∂t
+ v̄ · ∇x̄f

(2)
1 +

1

m2
∇ϕ1 · ∇v̄f

(2)
0 = 0,

△x̄ϕ1 = −
[∫

f
(1)
1 dv̄ −

∫
f
(2)
1 dv̄

]
, (35)

with initial data f
(i)
1 (x̄, v̄, 0) = Agi(v̄) cos(k1x), i = 1, 2, 2π-periodic boundary conditions in x̄, and

gi(v) decaying to zero as |v̄| → ∞ with sufficiently high rate. Applying identical mathematical treatment
as done previously for the fully Vlasov-Poisson system of equations, the following integral equation for
the Fourier transform F

(i)

k̄
(ξ̄, t) of f (i)

1 is obtained,

F
(i)

k̄
(ξ̄, t) = F

(i)

k̄
(ξ̄ − tk̄, 0)

+ρi

∫ t

0

ds
k̄ · (ξ̄ − sk̄)

|k̄|2
[F

(1)

k̄
(0, t− s)− F

(2)

k̄
(0, t− s)]ĝi(ξ̄2 − sk̄). (36)

Here ĝi is the corresponding Fourier transform of gi(v̄). In the following let consider ξ̄ = 0, and for
simplicity we assume k̄ = (k1, 0, 0). The Fourier transform of the x-component of the electric field is
given by, Êx(k1, t) = − i

k1
[F

(1)
k1

(0, t)−F
(2)
k1

(0, t)]. A recursive solution can be obtained for Êx(k1, t) using
Eq.(36), and yields,

Êx(k1, t) = −i
1

k1
Φ(k1, t) +

∞∑
j=1

(−1)j ηj(k̄, t). (37)

Here ηj is given by

ηj(k1, t) =
(−i)j

kj
1

∫ t

0

ds1 s1

∫ t−s1

0

ds2 s2 · · ·
∫ t−

∑j
l=1 sl

0

dsj sj

×Φ(k1, t−
j∑

l=1

sl)ĥ(−s1 k1)ĥ(−s2k̄) · · · ĥ(−sj k̄), (38)
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where Φ(k1, t) = F
(1)
k1

(−t k1, 0) − F
(2)
k1

(−t k1, 0), and ĥ(−t k1) = [ĝ1(−t k1) +
1

m2
ĝ2(−t k1)]. Note that

ηj can be obtained recursively from ηj−1 as follows

ηj(k1, t) =

∫ t

0

ds s ηj−1(k1, t− s)ĥ(−s k1) (39)

Multiplying Eq.(37) by ĥ(−s k1), and integrating with respect to s, it holds that∫ t

0

ds s Êx(k1, t− s)ĥ(−s k1) = −Êx(k1, t)− i
1

k1
Φ(k1, t), (40)

The integral equation above turns out to be a Volterra equation of the second kind, whose solution can
be obtained readily by means of the Laplace transform. In fact, Laplace transforming Eq. (40), we obtain

˜̂
Ex(k1, p) = −i

1

k1

Φ̃(k1, p)

D(k1, p)
, (41)

where D(k1, p) is given by

D(k1, p) = 1− 1

k1

d
˜̂
h

dp
(42)

The solution can be obtained taking the inverse Laplace transform, and is given formally by

Êx(k1, t) =
1

2πi

∫ σ+i∞

σ−i∞

˜̂
Ex(k1, p)e

p t dp, (43)

where integration is taken along a line parallel to the imaginary p-axis and to the right of all singularities
of the integral. Then, it holds

Êx(k1, t) =
∑
j

Rje
pj t, (44)

where pj are simple poles where the function D(k1, p) vanishes, and Rj is the residue of ˜̂
Ex at pj . Since

the poles are in general complex, Eq. (44) can be rewritten as

Êx(k1, t) =
∑
j

Rje
γj t+iωjt, (45)

being pj = γj+iωj . Note that if γj < 0, all terms are exponentially damped, and the electric field behaves
as a damped oscillator, where γj , and ωj denote the damping rate, and the frequency of the oscillation,
respectively. In the following some specific examples are given:

(a) Landau damping with homogeneous background. Let consider only electron motion, assuming that
the ions form a static, homogeneous, neutralizing background, that is m2 = ∞, and the initial condi-
tion f

(2)
1 does not depend on x̄. Suppose that the initial condition for the electrons is the maxwellian

distribution, g1(v̄) = (α/π)d/2 exp (−αv̄2), that is

f
(1)
1 (x̄, v̄, 0) = Ag1(v̄) cos(k1x). (46)

Then, the function D(k1, p) takes the form

D(k1, p) = 1− α

k2
1

Z′(ζ), (47)

where ζ = i
√
αp/k1, and Z(ζ) the plasma dispersion function. Note that this reproduces exactly the

classical result for the dispersion relation using the well-known linear Landau theory [24].
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(b) Landau damping with heterogeneous background. Now we take into account also the ion dynamics.
For simplicity, let assume that both initial conditions for ions and electrons are maxwellian distributions
for velocities, given by

f
(i)
1 (x̄, v̄, 0) = A

(αi

π

)d/2
e−α1v̄

2

cos(k1x), i = 1, 2 (48)

The function D(k1, p) reduces to

D(k1, p) = 1− α1

k2
1

Z′(ζ1)−
1

m2

α2

k2
1

Z′(ζ2), (49)

where ζi = i
√
αip/k1 i = 1, 2. Again, this coincides exactly with the results obtained using the classical

linear Landau theory [24].

4.3 Evaluating numerically the probabilistic representation of Vlasov-Poisson

Here we explain in detail how the probabilistic representation (32) can be used in practice to compute
numerically the solution of the Fourier-transformed Vlasov-Poisson system, and which are the numerical
errors done. For simplicity, in the following only the 1-dimensional case and one specie of charged particles
(electrons) moving in a neutralizing homogeneous background charge (ions), has been considered. Eq.(31)
can then further simplified by setting i = 1 and P (ρ = 1) = 1. Note that the probabilistic representation
for the Vlasov-Poisson system in (32) is not given in a closed-form. Following the same strategy as
explained previously for the case of the transport equations, such an implicit equation can be solved
recursively resorting to the aforementioned hybrid probabilistic representation approach, which in practice
requires generating prescribed random trees governed by two random variables S, and k′.

Regarding numerical errors, recall that in general the convergence of the Padé approximant can be
affected by artificial poles present in the denominator of the approximant, but not being own by the
function to be approximated, see e.g. [11,13].

Concerning the apparent robustness of the Padé approximant against the statistical error affecting
the coefficients of the series expansion, a main reason could be that the solution of the test examples
seems to be apparently locally Lipschitz. Thus, the error made in computing the coefficients of the Padé
approximant should be bounded. In fact, in [51] it has been proved the following related theorem

∥ Pf − Pf ′ ∥≤ K ∥ c− c′ ∥, (50)

provided that ∥ c − c′ ∥≤ d. Here Pf , and Pf ′ are the Padé approximants of order (m,n) in [a, b] of a
given power series f and f ′ with coefficients cj , and c′j respectively, being ∥ c ∥= maxi≤i≤n+m|ci|, f
locally Lipschitz, and K and d constants depending only on ci and [a, b].

In closing, it is worth to observe that all errors described above may be alleviated in any case by
increasing conveniently the sample size N , and considering more coefficients in the expansion in order to
compute the Padé approximant.
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4.3.1 Numerical test examples

Before analyzing the performance of our algorithm when ran in parallel, we give in the following some
numerical examples. These are chosen from the classical repertoire of possible initial conditions tradi-
tionally used for testing numerical methods developed for Vlasov-Poisson system, and which describe
certain phenomena well known in Plasma Physics. The ultimate goal is to characterize the accuracy of
the algorithm in realistic cases.

Landau damping. Let consider the following initial condition

f(x, v, 0) =
(α
π

)d/2
e−αv2

[1 +A cos (k1 x)] , (51)

which in Fourier space, reads,

Fk(ξ, 0) = e−
ξ2

4α [A/2 δ(|k| − k1) + δ(k)] (52)

The first numerical test deals with the so-called weak Landau damping, being the perturbation param-
eter A chosen sufficiently small. Here the damping rate and the oscillation frequency obtained numerically
with our algorithm has been compared with the results obtained by the linear theory theoretically de-
rived in Sec. 4.2.1. In Fig. 4 and 5, the damping rate and the oscillation frequency are shown for different
values of α, which is related so far to different values of the plasma temperature β, being β = 1/4α.
Here A has been kept fixed to 0.01. The remarkable agreement between the analytical linear theory and
the numerical results allows us to safely analyze more complicated situations such as the strong Landau
damping, where the aforementioned filamentation phenomenon is significantly more severe. Let consider
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Fig. 4 Weak Landau damping: damping rate for different values of β. Parameters are: A = 0.01 and M = 103.

the same initial condition, but now choosing larger values of A, that is A = 0.5 for exploring the strong
Landau damping regime. The numerical solution obtained by the PDD method has been compared with
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Fig. 5 Weak Landau damping: oscillation frequency for different values of β. Parameters are: A = 0.01 and M = 103.

the solution obtained when using an implicit upwind finite-difference scheme with a very fine mesh. The
initial evolution of the mode k = 1 is shown in Fig. 6, showing the well-known filamentation phenomenon:
an initial profile smooth in velocities, and peaked around ξ = 0 in Fourier space, evolves in time along
the corresponding characteristics at constant velocity given by k, that is Fk(ξ, t) = Fk(ξ − kt, 0). Thus,
the solution propagates toward higher values of |ξ|, proportionally fast to the value of |k|, therefore faster
for shorter wavelengths. Eventually this give rise to the development of small structures in the velocity
distribution. So it is observed that the filamentation and mixing of modes appears strongly for long times
in the nonlinear regime, and in the Fourier space, specifically for large values of ξ. Therefore, for this
case, it has been considered a computational domain large enough in the ξ−dimension, despite in the
figure it is only shown a part of it. To see more clearly that the solution is closely in agreement with
the results obtained using other classical methods, the time evolution of the first harmonic of the electric
field obtained by the PDD method is shown in Fig. 7, being qualitatively similar to the typical plots
found in the literature [35,22]. The solution obtained by the PDD method was satisfactorily compared
in [6] with that obtained with an upwind implicit scheme with a very fine mesh. Here, ∆ξ has been kept
fixed to 10−2 for the local solver. Note again the perfect agreement between the solution obtained by an
upwind implicit scheme with a very fine mesh and our PDD method. The absolute numerical error has
been numerically computed and it turns out to be or order of 10−2 in all simulations done.

Two streaming instability. Let consider the following initial condition, chosen for analyzing the two
streaming instability phenomenon,

f(x, v, 0) =
(α
π

)d/2
2α v2e−αv2

[1 +A cos (k1 · x)] , (53)

which in Fourier space reads

Fk(ξ, 0) = (1− ξ2

2α
)e−

ξ2

4α [A/2 δ(|k| − k1) + δ(k)] (54)

In Fig. 8 it is shown the time evolution of the predominant modes, where an initial, small perturbation
leads to a final state characterized by a rapid modes grow and saturation, approximately at the time
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Fig. 6 Strong Landau damping: Time evolution of the numerical solution for k = 1. The contour lines correspond to
F1(ξ, t) = 0. Parameters are: A = 0.5, α = 2 and M = 103.
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Fig. 7 Strong Landau damping: Logarithm of the absolute value of the first harmonic of the electric field. Parameters
are: A = 0.5, and α = 2.

t = 20. As already reported in literature by other authors (e.g., see [35]), the mode-one is the dominant
due to its initial excitation and reaches its maximum amplitude at t = 18. Once again, the numerical
solution has been compared with the solution obtained with an implicit upwind scheme with a very fine
mesh, and the numerical error computed as in the previous example, obtaining a similar result.

For performance results of the PDD method for large scale simulations, see [6].
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Fig. 8 Two streaming instability: Logarithm of the absolute values of the first four Fourier modes.

4.4 Summary

The PDD method presented shows that, when combined with classical methods, is capable of accelerating
the Vlasov-Poisson simulations, thus improving dramatically the overall scalability of classical algorithms.
Such method is based on the probabilistic representation of the Vlasov-Poisson system of equations,
obtained in Fourier space and generalized to deal with any realistic initial condition. The probabilistic
representation allows to compute the solution at single points within the computational domain, and is
obtained as the expected value of a multiplicative functional over suitable random trees. Such a feature
can be exploited to decouple the original problem into independent subproblems, previously obtaining the
required boundary conditions at given interfaces dividing the domain. The probabilistic method was used
to compute the solution at a few points, to be used as interpolation nodes to obtain the sought boundary
conditions at the interfaces. It consists therefore of a straightforward application of the Probabilistic
Domain Decomposition(PDD) method for the numerical solution of the Vlasov-Poisson system.

Moreover, the probabilistic representation was validated successfully in the linear regime comparing
with the classical results of the linear Landau damping theory. Regarding the numerical implementation of
such representation, this requires evaluating in practice some series with terms including definite integrals,
corresponding to the partial contribution to the solution of random trees with a given number of branches.
Typically, the higher terms are high dimensional, and were calculated by quasi-Monte Carlo methods.
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Rather than classical Monte Carlo method, the quasi-Monte Carlo offers a better convergence rate, of order
of O(1/N) compared with O(N−1/2), speeding up notably the simulations. When dealing with arbitrary
initial conditions, such a series might be divergent, and was approximated by the Padé approximant. To
study the error made, several test problems were analyzed so far, and it was shown that considering a
few coefficients of the series suffices to obtain a reasonable accuracy for sufficiently small times. Since
the approximation degrades fast when the time grows, and to avoid including higher terms in the series
expansion with the computational cost that this entails, a restarting procedure in time has been proposed.
The solution is computed globally in the full domain from time to time, and it is reused as the new initial
condition restarting the numerical procedure again. Being now the new initial condition numerically
obtained, a suitable interpolation procedure was implemented, which in practice degrades the theoretical
expected performance of the algorithm. However, some theoretical considerations were given and applied
to the algorithm to improve its overall performance, reducing the computational cost associated to such
a global interpolation.

To conclude, several examples were run in parallel and the results compared with those obtained
with classical algorithms. The examples were chosen from the typical repertoire of initial conditions
traditionally used for testing numerical methods developed for solving the Vlasov-Poisson system of
equations. The results shows the excellent scalability properties of the algorithm proposed when run in
large-scale simulations.

It is worth to remark that the method can be further generalized to deal with the Vlasov-Poisson sys-
tem in configuration space, since the needed probabilistic representation does already exist [50]. Moreover,
the probabilistic representation can be combined with any classical existing numerical method according
to the procedure described in this section, improving notably the performance of the resulting algorithm
when run in parallel supercomputers.

5 Fractional Partial Differential boundary-value problems

In these days, there is a renewed interest in Fractional partial differential equations (fPDEs). Relevant
aaplications in Science and Engineering include, for instance, control, biological tissues, materials for civil
engineering, neurosciences, complex (heterogeneous and random) media, plasma physics, seismology and
earthquakes modeling.

While solving purely initial-value problems seems to be to some extent tractable, the case of boundary-
value problems on a smooth bounded domain Ω ⊂ Rn is quite different, and it was observed that the
results depends strongly on the definition of the fractional derivative used so far [27,49]. One of the most
important differences among these variety of fractional derivatives are in the type of boundary data.
Essentially there are of two types: Those nonlocal boundary conditions (also called extended boundary
conditions) which are imposed on the complement Ωc of the domain, and the local boundary conditions
which are given only on ∂Ω. The latter coincides with the type of boundary conditions typically imposed
for classical partial differential equations, and moreover, under computational point of view, it has been
found to be the more advantageous for dealing with large scale problems. In fact, note that the nonlocal
boundary conditions require in practice to be able to tackle the unbounded region Ωc, which can be



The PDD method for solving linear, nonlinear, and fractional PDEs problems 25

computationally very costly for solving numerically those large scale problems. Therefore, in the following
we focus exclusively on the case of local boundary conditions.

A promising numerical method for solving fPDEs in bounded domains was recently proposed in [23] by
using the so-called spectral fractional derivative. The spectral fractional derivative is a nonlocal operator,
which is defined mathematically as the spectral decomposition of the standard Laplace operator, and is
given by

(−∆)β/2v(x) = − 1

Γ (−β/2)

∫ ∞

0

(et∆v(x)− v(x))
dt

t1+β/2
. (55)

Here ∆ denotes the classical Laplacian operator, and the exponential operator e∆ is formally defined, as
usual, through its expansion in Taylor series,

e∆ =
∞∑

k=1

(∆)k

k!
. (56)

The main idea of the numerical method consists in exploiting the integral formulation of the fractional
operator using the classical heat-semigroup formalism. One of the main advantage of this formalism rests
on the fact that classical methods, such as the well-known finite element method, could be adopted to
solve as well fPDEs by adapting it conveniently to this different mathematical framework. This in practice
will allow to potentially solve fPDEs in arbitrary complex geometries and boundary conditions, which is
of paramount importance in order to be able to analyze natural phenomena modeled by fPDEs in realistic
environments.

An important problem, however, remains open, which is the possibility of using this numerical method
for solving large scale problems. Since the numerical method is based on the finite element method, and
therefore it requires a computational mesh to be solved, it inherits all of its disadvantages. In fact an
important disadvantage of the method is the strong intercommunication overhead of the algorithm for
solving large scale problems in distributed memory parallel computers. The major problem is the routine
use of computational meshes when solving numerically a given problem. Since the mesh is a numerical
tool connecting globally the discretized domain, any classical domain decomposition techniques induce an
unavoidable communication among the processors involved when the numerical method is parallelized. It is
worth pointing out that such a communication overhead acts always negatively degrading the performance
of the algorithms, being even worse when using a large number of cores. Note that for the case of fPDEs
this may be even more dramatic since the fractional operators are by definition nonlocal.

An alternative to the aforementioned domain decomposition method does exist, and consists in proba-
bilistic methods based on Monte Carlo simulations. The main advantage of the probabilistic methods are
mainly due to its special computational features, such as simplicity to code and parallelization. This in
practice allows to develop parallel codes with extremely low communication overhead among processors,
having a positive impact in parallel features such as scalability and fault-tolerance. Furthermore, there
is also another distinguishing aspect of the method, which is the capability of computing the solution of
the problem at specific chosen points, without the need of solving the entire problem. This remarkable
feature has been explored for efficiently solving continuous problems such as boundary-value problems for
classical PDEs offering important advantages in dealing with some specific applications found in Science
and Engineering.
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A feasible alternative, therefore, consists in generalizing the PDD method for solving now fPDE
boundary-value problems. In principle, the PDD method could be applied to any problem, provided a
probabilistic representation of the solution can be found. For the specific case of the spectral fractional
Laplacian, it is known that the spectral operator in Eq. (55) with Dirichlet boundary conditions is the
generator of a suitable subordinate stopped Brownian motion, i.e., stopped Brownian motion that is then
subordinated by the standard stable subordinator. Therefore, it can be derived an analogous Feynman-Kac
formula, where the corresponding Brownian motion is replaced now by a subordinate stopped Brownian
motion [49]. Thus, the solution of the homogeneous Dirichlet boundary-value problem

∂u

∂t
= ∆β/2u, a < x < b, t > 0

u(x, 0) = f(x).

u(a, t) = f(a) = 0, u(b, t) = f(b) = 0, (57)

can be represented probabilistically as follows

u(x, t) = E
[
f(XSt

)1[τ∂Ω>St]

]
(58)

where St is the subordinate process, that is an increasing stable Lévy process with index β, and Xt the
corresponding Brownian motion. Here τ∂Ω denotes the first exit time of the path Xt, started at X0 = x,
when ∂Ω is crossed, and 1[τ∂Ω>t] is the indicator (or characteristic) function. Note that in practice
the subordination process consists merely of replacing the time t by the operational time given by the
subordinator St.

Generating the stopped Brownian motion can be done simply by using the standard numerical tech-
niques already available for solving probabilistically classical partial differential equations. A special care
should be paid, however, when computing the first exit time and point out of the domain, as it was
already mentioned in previous sections. Concerning the subordinated process, there are already several
procedures available in the literature to generate numerically such a process, see [45] e.g. Since the solu-
tion is computed through an expected value of a given finite sample N , whose elements are independent
from each other, it becomes straightforward to be parallelized.

In the following, to illustrate the probabilistic method we solved a simple example consisting in a
Dirichlet boundary value problem for a 1D space-fractional diffusion equation in Eq. (57) using the
probabilistic representation of the solution as described above. For this simple example, there exists an
analytical solution [27] and is given by

u(x, t) =
2

π

∞∑
k=1

cos (2kπ/5)− cos (3kπ/5)

k
e−(kπ/2)βt

sin (kπ/2(1 + x)). (59)

for the problem in the domain x ∈ [−1, 1], and initial condition

f(x) =

1 if x ∈ (−0.2, 0.2)

0 otherwise
(60)

In Fig. 5 we compare the results corresponding to the numerical solution obtained using the proba-
bilistic representation at different spatial points inside the domain, and the analytical solution plotted in
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solid line. The results correspond to two different times, t = 1, and t = 2. Note the excellent agreement
between both solutions.
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Fig. 9 Comparison between the probabilistic solution and the analytical solution of a Dirichlet fPDE boundary value
problem. The fractional index has been kept fixed to β = 1.5, the sample size N = 104, and the time step ∆t = 10−2.

6 Conclusions

We have reviewed the PDD (probabilistic domain decomposition) method for numerically solving a wide
range of linear and nonlinear partial differential equations of parabolic and hyperbolic type, as well as
for fractional equations. This method was originally introduced for solving linear elliptic problems. It is
based on a novel hybrid approach where an efficient Domain Decomposition is effectively accomplished
by means of the probabilistic representation of the solution of the problem.

After an introduction detailing how this method works for linear parabolic problems, we have first
showed the probabilistic representation for certain nonlinear parabolic problems, generalizing the results
derived by McKean for the KPP equation. Later, a further extension of the method for dealing with
semilinear parabolic partial differential equations has been presented. It is important to emphasize the
major drawback faced in the attempt of such generalization, consisting in the numerical evaluation of a
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truncated, alternating divergent series. This issue was sorted out by relying on Padé-type approximants
to obtain numerically asymptotic approximations, always proven to be robust and reliable.

On the other hand, for semilinear transport equations, a probabilistic representations has been pro-
posed in terms of the characteristic curves. It is important to remark that for hyperbolic problems in
general, the characteristic curves play a similar role in such a representation as the stochastic process
does for the parabolic problems. As an important application, the PDD method has been extended to
deal with the Vlasov-Poisson system of equations in Fourier Space, which represents a very important
and challenging problem in the field of Plasma Physics. Here, an existing probabilistic representation in
Fourier space has been conveniently reformulated for computational purposes, validated successfully in
the linear regime comparing with the classical results of the linear Landau damping theory. This theory
has also been used to validate the probabilistic method numerically, which has had particular importance
given the lack of exact analytical solutions.

In practice, for semi-linear problems a series with terms composed of definite integrals have to be
evaluated, corresponding to the partial contribution to the solution of random trees with a given number
of branches. Typically, the higher terms are of high dimensionality, and are calculated by the quasi-
Monte Carlo method. Rather than classical Monte Carlo method, the quasi-Monte Carlo offers a better
convergence rate, speeding up notably the simulations. When dealing with arbitrary initial conditions,
such a series might be divergent, and was again approximated by the Padé approximant. The PDD method
has shown theoretically and in practice to accelerate the numerical simulations, improving dramatically
the overall scalability of classical algorithms.

Finally, we have shown the latest progress of the PDD method for dealing with fractional PDEs. We
have provided a case example for the 1D space-fractional diffusion equation, showing promising results.
As future work, the PDD method should be generalize further to deal with different kind of fractional
operators (in time as well), an also for high dimensions.

As a final remark, when applicable, the PDD method enables for sustained high performance com-
puting when solving challenging scientific problems formulated via partial differential equations. As ob-
served through several test examples when compared with classical domain decomposition techniques, the
method achieves superior performance and scalability results on supercomputing environments. Based on
the fact that it is naturally fault-tolerant, the method also provides robustness and reliability by con-
struction. Given that the subproblems are fully decoupled, a system failure is no longer dramatic, as it
is simply required to run the simulation again, possibly asynchronously, only for the set of subproblems
that have not finished successfully.
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