Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/25975
Registo completo
Campo DCValorIdioma
dc.contributor.authorCaldeira, F.-
dc.contributor.authorNunes, L.-
dc.contributor.authorRibeiro, R.-
dc.contributor.editorCordeiro, J., Pereira, M. J., Rodrigues, N. F., and Pais, S.-
dc.date.accessioned2022-08-02T14:26:10Z-
dc.date.available2022-08-02T14:26:10Z-
dc.date.issued2022-
dc.identifier.isbn978-3-95977-245-7-
dc.identifier.issn2190-6807-
dc.identifier.urihttp://hdl.handle.net/10071/25975-
dc.description.abstractComplaint management is a problem faced by many organizations that is both vital to customer image and highly dependent on human resources. This work attempts to tackle a part of the problem, by classifying summaries of complaints using machine learning models in order to better redirect these to the appropriate responders. The main challenges of this task is that training datasets are often small and highly imbalanced. This can can have a big impact on the performance of classification models. The dataset analyzed in this work suffers from both of these problems, being relatively small and having labels in different proportions. In this work, two different techniques are analyzed: combining classes together to increase the number of elements of the new class; and, providing new artificial examples for some classes via translation into other languages. The classification models explored were the following: k-NN, SVM, Naïve Bayes, boosting, and Deep Learning approaches, including transformers. The paper concludes that although, as expected, the classes with little representation are hard to classify, the techniques explored helped to boost the performance, especially in the classes with a low number of elements. SVM and BERT-based models outperformed their peers.eng
dc.language.isoeng-
dc.publisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT-
dc.relation.ispartofOpenAccess Series in Informatics-
dc.rightsopenAccess-
dc.subjectText classificationeng
dc.subjectNatural language processingeng
dc.subjectDeep learningeng
dc.subjectBERTeng
dc.titleClassification of public administration complaintseng
dc.typeconferenceObject-
dc.event.title11th Symposium on Languages, Applications and Technologies (SLATE 2022)-
dc.event.typeConferênciapt
dc.event.locationCovilhãeng
dc.event.date2022-
dc.peerreviewedyes-
dc.volume104-
dc.date.updated2022-08-02T15:24:49Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.4230/OASIcs.SLATE.2022.9-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.subject.odsTrabalho digno e crescimento económicopor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-89941-
Aparece nas coleções:ISTAR-CRI - Comunicações a conferências internacionais
IT-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceobject_89941.pdf661,85 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.