Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/25443
Registo completo
Campo DCValorIdioma
dc.contributor.authorCamacho, P.-
dc.contributor.authorAlmeida, A. de.-
dc.contributor.authorAntónio, N.-
dc.contributor.editorCarvalho, J. V. de., Rocha, Á., Liberato, P., and Peña, A.-
dc.date.accessioned2022-05-18T11:43:11Z-
dc.date.available2022-05-18T11:43:11Z-
dc.date.issued2020-
dc.identifier.isbn978-981-33-4256-9-
dc.identifier.issn2190-3018-
dc.identifier.urihttp://hdl.handle.net/10071/25443-
dc.description.abstractThe growing trend in leisure tourism has been closely followed by the number of hospitality services. Nowadays, customers are more sophisticated and demand a personalized and simplified experience, which is commonly achieved through the use of technological means for anticipating customer behavior. Thus, the ability to predict a customer’s willingness to buy is also a growing trend in hospitality businesses to reach more customers and consolidate existing ones. The acquisition of a transfer service through website reservation generates data that can be used to perform customer segmentation and enable recommendations for other products or services to a customer, like recreation experiences. This work uses data from a Portuguese private transfer company to understand how its private transfer business customers can be segmented and how to predict their behavior to enhance services cross-selling. Information extracted from the data acquired with the private transfer reservations is used to train a model to predict customer willingness to buy, and based on it, offer leisure services to customers. For that, a hybrid classifier was trained to offer recommendations to a customer when he/she is booking a transfer. The model employs a two-phase process: first, a binary classifier asserts if the customer who’s buying the transfer would eventually buy a service experience. In that case, a multi-class model decides what should be the most likely experience to be recommended.eng
dc.language.isoeng-
dc.publisherSpringer Singapore-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT-
dc.rightsopenAccess-
dc.subjectHospitalityeng
dc.subjectTransferseng
dc.subjectCustomer segmentationeng
dc.subjectRecommendation systemeng
dc.titleUsing customer segmentation to build a hybrid recommendation modeleng
dc.typeconferenceObject-
dc.event.titleInternational Conference on Tourism, Technology and Systems, ICOTTS 2020-
dc.event.typeConferênciapt
dc.event.locationCartagenaeng
dc.event.date2020-
dc.pagination299 - 308-
dc.peerreviewedyes-
dc.journalAdvances in Tourism, Technology and Systems. Smart Innovation, Systems and Technologies-
dc.volume208-
degois.publication.firstPage299-
degois.publication.lastPage308-
degois.publication.locationCartagenaeng
degois.publication.titleUsing customer segmentation to build a hybrid recommendation modeleng
dc.date.updated2022-05-18T12:42:47Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1007/978-981-33-4256-9_27-
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-82407-
iscte.alternateIdentifiers.wosWOS:WOS:000759163000027-
iscte.alternateIdentifiers.scopus2-s2.0-85097245362-
Aparece nas coleções:ISTAR-CRI - Comunicações a conferências internacionais
IT-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
conferenceobject_82407.pdfVersão Aceite641,2 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.