Please use this identifier to cite or link to this item:
http://hdl.handle.net/10071/24558| Author(s): | Bettencourt, G. H. Mendes, S. |
| Date: | 2021 |
| Title: | On the stability of a quadratic functional equation over non-Archimedean spaces |
| Volume: | 35 |
| Number: | 8 |
| Pages: | 2693 - 2704 |
| ISSN: | 0354-5180 |
| DOI (Digital Object Identifier): | 10.2298/FIL2108693B |
| Keywords: | Hyers-Ulam stability Fréchet functional equation Length function |
| Abstract: | Let G be an abelian group and suppose that X is a non-Archimedean Banach space. We study Hyers-Ulam-Rassias stability for the functional equation of quadratic type $$f (x + y + z) + f (x) + f (y) + f (z) = f (x + y) + f (y + z) + f (z + x)$$ where $f : G\to X$ is a map. |
| Peerreviewed: | yes |
| Access type: | Open Access |
| Appears in Collections: | DM-RI - Artigos em revistas científicas internacionais com arbitragem científica |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| article_86548.pdf | Versão Editora | 201,9 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.












