Skip navigation
User training | Reference and search service

Library catalog

Retrievo
EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/2402
acessibilidade
Title: Sincronização de sistemas dinâmicos caóticos por ligação unidireccional e bidireccional
Authors: Laureano, Maria do Rosário Domingos
Orientador: Mendes, Diana Aldea
Ferreira, Manuel Alberto M.
Keywords: Sistemas dinâmicos caóticos contínuos e discretos
Sincronização de caos
Estabilidade assimptótica local e global
Simulações numéricas
Continuous and discrete chaotic systems
Chaos synchronization
Local and global asymptotical stability
Numerical simulations
Issue Date: 2008
Citation: LAUREANO, Maria do Rosário Domingos - Sincronização de sistemas dinâmicos caóticos por ligação unidireccional e bidireccional [Em linha]. Lisboa: ISCTE, 2008. Tese de doutoramento. [Consult. Dia Mês Ano] Disponível em www:<http://hdl.handle.net/10071/2402>. ISBN 978-989-732-047-7.
Abstract: Abordamos o fenómeno de sincronização de sistemas dinâmicos caóticos em tempo contínuo e em tempo discreto. Por permitir abordar as questões que consideramos essen- ciais em sincronização, todas as ligações estudadas envolvem apenas dois sistemas caóticos. Em tempo contínuo, nos regimes de sincronização idêntica e generalizada, aplicamos di- versos esquemas de ligação unidireccional e bidireccional entre sistemas de Lorenz ou de Rössler com comportamento caótico. Procedemos à combinação de alguns deles com subs- tituição total ou parcial nos termos não-lineares do segundo sistema, uma possibilidade que tem sido pouco explorada. Embora em alguns esquemas apenas se conclua acerca da estabilidade local do estado sincrónico, apresentamos esquemas de ligação onde a estabili- dade global é garantida. As condições de estabilidade global resultam de uma abordagem do método directo de Lyapunov diferente da usual. Em tempo discreto estudamos um esquema de ligação não-linear que surge de forma natural a partir da família de trans- formações quadráticas complexas analíticas. Tanto quanto sabemos esta ligação não foi até agora objecto de estudo. Trata-se de uma ligação assimétrica entre transformações quadráticas reais. Quando não é alcançada sincronização prática, mas a diferença entre as variáveis dinâmicas dos dois sistemas é limitada, aplicamos uma técnica de controle de caos. Obtemos sincronização idêntica e generalizada estável com algumas variantes da ligação original, privilegiando a ausência de simetria. Duas delas constituem uma generali- zação ao uso de parâmetros de ligação distintos. Por análise da diferença entre as variáveis dinâmicas dos sistemas, estabelecemos alguns resultados que garantem a sua sincronização estável.
We consider synchronization phenomena of chaotic dynamical systems, both in con- tinuous and discrete time. In what follows we will always consider two chaotic dynamical systems, since they are sufficient to study the essential in the proposed coupling schemes. In continuous time, for identical and generalized synchronization, we apply various uni- directional and bidirectional coupling schemes between Lorenz or Rössler systems with chaotic behavior. We combine some of these with total or partial substitution on the nonlinear terms of the second system, a coupling version that was less explored. In some cases we only conclude about local stability of the synchronous state, and in other studies we present coupling schemes where the global stability is guaranteed . The conditions of global stability are obtained from a different approach of the Lyapynov direct method. In discrete time, we study a nonlinear coupling scheme that appears in natural a family of analytic complex quadratic maps. We are not aware about any studies of this type of coupling. It is an asymmetric coupling between two real quadratic maps. When practical synchronization is not achieved, but the difference between the dynamical variables of the systems is limited, we still can apply a chaos control technique. We obtain stable identical and generalized synchronization with some versions of the original coupling, highlighting the absence of symmetry. Two of them are generalizations promoting the use of different parameters coupling. By analysing the difference between the dynamical variables of the systems, we obtain some results leading to stable synchronization.
Description: JEL Classification: C65 e C68
URI: http://hdl.handle.net/10071/2402
ISBN: 978-989-732-047-7
Designation: Doutoramento em Métodos Quantitativos
Appears in Collections:T&D-TD - Teses de doutoramento

Files in This Item:
acessibilidade
File Description SizeFormat 
tesedocfinal.pdf5.37 MBAdobe PDFView/Open
anexofinal.pdf202.57 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.