Please use this identifier to cite or link to this item:
Author(s): Cardoso, J.
Glória, A.
Sebastião, P.
Date: 2020
Title: Improve irrigation timing decision for agriculture using real time data and machine learning
Event title: 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy, ICDABI 2020
ISBN: 978-1-7281-9675-6
DOI (Digital Object Identifier): 10.1109/ICDABI51230.2020.9325680
Keywords: Machine learning
Neural network
Decision tree
Support vector machine
Random forest
Smart irrigation
Abstract: With the constant evolution of technology and the constant appearance of new solutions that, when combined, manage to achieve sustainability, the exploration of these systems is increasingly a path to take. This paper presents a study of machine learning algorithms with the objective of predicting the most suitable time of day for water administration to an agricultural field. With the use of a high amount of data previously collected through a Wireless Sensors Network (WSN) spread in an agricultural field it becomes possible to explore technologies that allow to predict the best time for water management in order to eliminate the scheduled irrigation that often leads to the waste of water being the main objective of the system to save this same natural resource.
Peerreviewed: yes
Access type: Open Access
Appears in Collections:IT-CRI - Comunicações a conferências internacionais

Files in This Item:
File Description SizeFormat 
conferenceobject_78553.pdfVersão Aceite254,74 kBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.