Please use this identifier to cite or link to this item:
http://hdl.handle.net/10071/22877
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jardim, D. | - |
dc.contributor.author | Nunes, L. | - |
dc.contributor.author | Dias, M. | - |
dc.contributor.editor | Verikas, A., Radeva, P., Nikolaev, D. P., Zhang, W. and Zhou, J. | - |
dc.date.accessioned | 2021-07-06T10:01:41Z | - |
dc.date.available | 2021-07-06T10:01:41Z | - |
dc.date.issued | 2017-01-01 | - |
dc.identifier.isbn | 978-1-5106-1132-0 | - |
dc.identifier.issn | 0277-786X | - |
dc.identifier.uri | http://hdl.handle.net/10071/22877 | - |
dc.description.abstract | In our daily activities we perform prediction or anticipation when interacting with other humans or with objects. Prediction of human activity made by computers has several potential applications: surveillance systems, human computer interfaces, sports video analysis, human-robot-collaboration, games and health-care. We propose a system capable of recognizing and predicting human actions using supervised classifiers trained with automatically labeled data evaluated in our human activity RGB-D dataset (recorded with a Kinect sensor) and using only the position of the main skeleton joints to extract features. Using conditional random fields (CRFs) to model the sequential nature of actions in a sequence has been used before, but where other approaches try to predict an outcome or anticipate ahead in time (seconds), we try to predict what will be the next action of a subject. Our results show an activity prediction accuracy of 89.9% using an automatically labeled dataset. | eng |
dc.language.iso | eng | - |
dc.publisher | SPIE | - |
dc.relation | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBDE%2F52125%2F2013/PT | - |
dc.rights | openAccess | - |
dc.subject | Human motion analysis | eng |
dc.subject | Recognition | eng |
dc.subject | Segmentation | eng |
dc.subject | Clustering | eng |
dc.subject | Labeling | eng |
dc.subject | Kinect | eng |
dc.subject | Prediction | eng |
dc.subject | Anticipation | eng |
dc.title | Predicting human activities in sequences of actions in RGB-D videos | eng |
dc.type | conferenceObject | - |
dc.event.title | 9th International Conference on Machine Vision, ICMV 2016 | - |
dc.event.type | Conferência | pt |
dc.event.location | Nice, France | eng |
dc.event.date | 2016 | - |
dc.peerreviewed | yes | - |
dc.journal | Proceedings of SPIE, Ninth International Conference on Machine Vision (ICMV 2016) | - |
dc.volume | 10341 | - |
degois.publication.location | Nice, France | eng |
degois.publication.title | Predicting human activities in sequences of actions in RGB-D videos | eng |
dc.date.updated | 2021-07-06T10:58:42Z | - |
dc.description.version | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.doi | 10.1117/12.2268524 | - |
dc.subject.fos | Domínio/Área Científica::Ciências Naturais::Matemáticas | por |
dc.subject.fos | Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação | por |
dc.subject.fos | Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | por |
iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-42663 | - |
iscte.alternateIdentifiers.wos | WOS:000410664800011 | - |
iscte.alternateIdentifiers.scopus | 2-s2.0-85029913124 | - |
Appears in Collections: | ISTAR-CRI - Comunicações a conferências internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
conferenceobject_42663.pdf | Versão Aceite | 418,62 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.