Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/22877
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJardim, D.-
dc.contributor.authorNunes, L.-
dc.contributor.authorDias, M.-
dc.contributor.editorVerikas, A., Radeva, P., Nikolaev, D. P., Zhang, W. and Zhou, J.-
dc.date.accessioned2021-07-06T10:01:41Z-
dc.date.available2021-07-06T10:01:41Z-
dc.date.issued2017-01-01-
dc.identifier.isbn978-1-5106-1132-0-
dc.identifier.issn0277-786X-
dc.identifier.urihttp://hdl.handle.net/10071/22877-
dc.description.abstractIn our daily activities we perform prediction or anticipation when interacting with other humans or with objects. Prediction of human activity made by computers has several potential applications: surveillance systems, human computer interfaces, sports video analysis, human-robot-collaboration, games and health-care. We propose a system capable of recognizing and predicting human actions using supervised classifiers trained with automatically labeled data evaluated in our human activity RGB-D dataset (recorded with a Kinect sensor) and using only the position of the main skeleton joints to extract features. Using conditional random fields (CRFs) to model the sequential nature of actions in a sequence has been used before, but where other approaches try to predict an outcome or anticipate ahead in time (seconds), we try to predict what will be the next action of a subject. Our results show an activity prediction accuracy of 89.9% using an automatically labeled dataset.eng
dc.language.isoeng-
dc.publisherSPIE-
dc.relationinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBDE%2F52125%2F2013/PT-
dc.rightsopenAccess-
dc.subjectHuman motion analysiseng
dc.subjectRecognitioneng
dc.subjectSegmentationeng
dc.subjectClusteringeng
dc.subjectLabelingeng
dc.subjectKinecteng
dc.subjectPredictioneng
dc.subjectAnticipationeng
dc.titlePredicting human activities in sequences of actions in RGB-D videoseng
dc.typeconferenceObject-
dc.event.title9th International Conference on Machine Vision, ICMV 2016-
dc.event.typeConferênciapt
dc.event.locationNice, Franceeng
dc.event.date2016-
dc.peerreviewedyes-
dc.journalProceedings of SPIE, Ninth International Conference on Machine Vision (ICMV 2016)-
dc.volume10341-
degois.publication.locationNice, Franceeng
degois.publication.titlePredicting human activities in sequences of actions in RGB-D videoseng
dc.date.updated2021-07-06T10:58:42Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1117/12.2268524-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Matemáticaspor
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-42663-
iscte.alternateIdentifiers.wosWOS:000410664800011-
iscte.alternateIdentifiers.scopus2-s2.0-85029913124-
Appears in Collections:ISTAR-CRI - Comunicações a conferências internacionais

Files in This Item:
File Description SizeFormat 
conferenceobject_42663.pdfVersão Aceite418,62 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.