Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/22539
Author(s): Mendes, S.
Soares, H.
Miró-Roig, M.
Date: 2021
Title: Vector bundles E on P^3 with homological dimension 2 and chi(End E)=1
Volume: 33
Number: 3
Pages: 808 - 820
ISSN: 0933-7741
DOI (Digital Object Identifier): 10.1515/forum-2020-0169
Keywords: Homological dimension
Linear resolutions
Diophantine equations
Ternary quadratic forms
Abstract: We find the complete integer solutions of the equation X2 + Y2 + Z2 − 4XY − 4YZ + 10XZ = 1. As an application, we prove that, for each solution (a, b, c) such that a > 0, b − 2a > 0 and (b − 2a)2 ≥ 4a, there is a vector bundle E on ℙ3 defined by a minimal linear resolution 0 → Oℙ3 (−2)a → Oℙ3 (−1)b → Oℙc3 → E → 0. In particular, E satisfies ?(End E) = 1.
Peerreviewed: yes
Access type: Open Access
Appears in Collections:DM-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
article_81412.pdfVersão Editora819,14 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.