Please use this identifier to cite or link to this item:
http://hdl.handle.net/10071/22539
Author(s): | Mendes, S. Soares, H. Miró-Roig, M. |
Date: | 2021 |
Title: | Vector bundles E on P^3 with homological dimension 2 and chi(End E)=1 |
Volume: | 33 |
Number: | 3 |
Pages: | 808 - 820 |
ISSN: | 0933-7741 |
DOI (Digital Object Identifier): | 10.1515/forum-2020-0169 |
Keywords: | Homological dimension Linear resolutions Diophantine equations Ternary quadratic forms |
Abstract: | We find the complete integer solutions of the equation X2 + Y2 + Z2 − 4XY − 4YZ + 10XZ = 1. As an application, we prove that, for each solution (a, b, c) such that a > 0, b − 2a > 0 and (b − 2a)2 ≥ 4a, there is a vector bundle E on ℙ3 defined by a minimal linear resolution 0 → Oℙ3 (−2)a → Oℙ3 (−1)b → Oℙc3 → E → 0. In particular, E satisfies ?(End E) = 1. |
Peerreviewed: | yes |
Access type: | Open Access |
Appears in Collections: | DM-RI - Artigos em revistas científicas internacionais com arbitragem científica |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
article_81412.pdf | Versão Editora | 819,14 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.