Skip navigation
Logo
User training | Reference and search service

Library catalog

Retrievo
EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/20468
acessibilidade
Title: Forecasting the capacity of LTE mobile networks
Authors: Salazar, Ruben José Neri
Orientador: Oliveira, João Pedro
Bastos, João
Keywords: Forecasting
Analytics
Predictive models
Time series
Data science
Previsões
Modelos preditivos
Séries temporais
Infraestruturas de telecomunicações
LTE -- Long term evolution
Modelos de previsão
Indicadores de desempenho
Issue Date: 6-Dec-2019
Citation: SALAZAR, Ruben José Neri - Forecasting the capacity of LTE mobile networks [Em linha]. Lisboa: ISCTE-IUL, 2019. Dissertação de mestrado. [Consult. Dia Mês Ano] Disponível em www:<http://hdl.handle.net/10071/20468>.
Abstract: The ever increasing usage of networks around the world made the telecommunication companies to start planning ahead out of necessity. The present work is focused on analysing and understanding which of the tested predictive models best suits Long Term Evolution (LTE) behaviour regarding its capacity, by forecasting several Key Performance Indicators (KPI) originated from network daily cells and dedicated to the same subject. Many were the tested models, ranging from the benchmark models (which comprise naïve, seasonal naïve and drift), to Exponential Smoothing (ES), AutoRegressive Integrated Moving Average (ARIMA), Theta and Linear Regression and also including models used in the latest M4 competition. The inherent purpose was not to find a model that was definitely better than the remaining, but instead to understand which model can best serve the KPI under analysis and the predicted forecasted horizon. The present study forecasts and analyses several different models in order to achieve better predictive results so that telecommunication companies can make more informed decisions regarding network planning.
O contínuo aumento global da utilização das redes de telecomunicação fez com que para os operadores de telecomunicações o planeamento deste tipo de infraestrutura fosse uma necessidade a considerar atempadamente. O presente estudo é focado na análise e compreensão sobre qual o modelo preditivo que melhor se adapta ao comportamento da rede Long Term Evolution (LTE) no que respeita à previsão da sua capacidade, ao calcular os valores futuros de vários indicadores de performance (KPI) originados por células, com frequência diária. Foram testados vários modelos, que incluem não apenas modelos de referência como naïve, seasonal naïve e drift, mas também Exponential Smoothing (ES), AutoRegressive Integrated Moving Average (ARIMA), Theta e o modelo Regressão Linear. Contudo, este estudo contou também com a utilização de outros modelos provenientes da competição M4. O propósito deste trabalho não é o de encontrar um modelo que se destaque de todos os outros nas várias previsões feitas, mas em vez disso compreender qual o modelo que melhor pode prever os futuros valores de um determinado KPI. Este trabalho analisa as várias previsões feitas pelos modelos estudados de forma a poder obter valores mais fidedignos para que dessa forma as operadores do mercado, possam tomar decisões mais bem informadas.
Peer reviewed: yes
URI: http://hdl.handle.net/10071/20468
Thesis identifier: 202461815
Designation: Mestrado em Informática e Gestão
Appears in Collections:T&D-DM - Dissertações de mestrado

Files in This Item:
acessibilidade
File Description SizeFormat 
Master_Ruben_Neri_Salazar.pdf2.05 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.