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Abstract
The ever increasing usage of networks around the world made the telecommu-

nication companies to start planning ahead out of necessity.

The present work is focused on analysing and understanding which of the tested
predictive models best suits Long Term Evolution (LTE) behaviour regarding its
capacity, by forecasting several Key Performance Indicators (KPI) originated from
network daily cells and dedicated to the same subject.

Many were the tested models, ranging from the benchmark models (which
comprise naïve, seasonal naïve and drift), to Exponential Smoothing (ES), Au-
toRegressive Integrated Moving Average (ARIMA), Theta and Linear Regression
and also including models used in the latest M4 competition.

The inherent purpose was not to find a model that was definitely better than
the remaining, but instead to understand which model can best serve the KPI
under analysis and the predicted forecasted horizon.

The present study forecasts and analyses several different models in order to
achieve better predictive results so that telecommunication companies can make
more informed decisions regarding network planning.

Keywords: Forecasting, analytics, predictive models, time series, data science
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Resumo
O contínuo aumento global da utilização das redes de telecomunicação fez com

que para os operadores de telecomunicações o planeamento deste tipo de infraestru-
tura fosse uma necessidade a considerar atempadamente.

O presente estudo é focado na análise e compreensão sobre qual o modelo
preditivo que melhor se adapta ao comportamento da rede Long Term Evolution
(LTE) no que respeita à previsão da sua capacidade, ao calcular os valores futuros
de vários indicadores de performance (KPI) originados por células, com frequência
diária.

Foram testados vários modelos, que incluem não apenas modelos de referência
como naïve, seasonal naïve e drift, mas também Exponential Smoothing (ES),
AutoRegressive Integrated Moving Average (ARIMA), Theta e o modelo Regressão
Linear. Contudo, este estudo contou também com a utilização de outros modelos
provenientes da competição M4.

O propósito deste trabalho não é o de encontrar um modelo que se destaque de
todos os outros nas várias previsões feitas, mas em vez disso compreender qual o
modelo que melhor pode prever os futuros valores de um determinado KPI.

Este trabalho analisa as várias previsões feitas pelos modelos estudados de
forma a poder obter valores mais fidedignos para que dessa forma as operadores
do mercado, possam tomar decisões mais bem informadas.

Palavras Chave: Previsões, analytics, modelos preditivos, series temporais, data
science
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Chapter 1

Introduction

In the past decades the use of cellphones, namely smartphones, has evolved

from only using them to make phone calls to a constant more diverse use. They

have also become instruments of communication between communities rather than

singular people, a necessity rather than an utility. And so it justifies the fast-paced

growing of the cellphone networks.

Mobile devices and connections are not only getting smarter in their computing

capabilities but are also evolving from lower-generation network connectivity (2G)

to higher-generation network connectivity (3G, 3.5G and 4G or LTE) [2].

Since the launch of the first-generation (1G) in 1979, the evolution has been

continuous - with great improvements in the following generations. As a result,

networks became more and more complex.

The first-generation has fulfilled the basic mobile voice, while the second-

generation dealt with capacity and coverage. The third-generation focused on

higher data rate, multimedia support and spread spectrum, and it was followed by

fourth-generation which provided access to a wide range of telecommunication ser-

vices including advanced mobile services along with a support from low to higher

mobility application. The use of mobile/cellular phones has been increasing in the

last 8 years [3].
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Networks have been growing to support more and more simultaneous users that

have a diverse variety of utilization and purposes. This explosion in growth results

in a network that also grows in complexity, consequently becoming an increasing

management challenge to the operators.

In 2017 Cisco published a study on worldwide telecommunication analysis. The

paper approaches the network growth and predicts the next five years. This study

mentions that global mobile data traffic grew 63% in 2016. Global mobile data

traffic reached 7.2 exabytes per month at the end of 2016, up from 4.4 exabytes

per month at the end of 2015 [2].

Mobile data traffic has grown 18-fold over the past 5 years. Mobile networks

carried 400 petabytes per month in 2011 [2].

Regarding LTE, the same study refers fourth-generation (4G) traffic accounted

for 69% of mobile traffic in 2016. Although 4G connections represented only 26%

of mobile connections in 2016, they already accounted for 69% of mobile data

traffic while 3G connections represented 33% of mobile connections and 24% of

the traffic. In 2016 a 4G connection generated four times more traffic on average

than a 3G connection. Almost half a billion (429 million) mobile devices and

connections that were added in 2016, smartphones accounted for most of that

growth, followed by M2M mobiles. Global mobile devices and connection in 2016

grew to 8 billion, up from 7.6 billion in 2015 [2].

This study is corroborated by Ericsson mobility report published in June 2018.

In retrospect, two decades led to fundamental changes in our society. When mobile

data traffic surpassed mobile voice traffic in 2009, it was difficult to know what

today’s use of mobile technology would look like [4].

Worldwide total monthly mobile data traffic will increase to 107 exabytes by

2023 from 15 exabytes in 2017. By the end of 2023 close to 95% of all subscriptions

will be from mobile broadband. Mobile data traffic grew 54% between the first

quarter of 2017 and the first quarter of 2018. Monthly mobile data traffic per

smartphone continues to increase in all regions. Total mobile data traffic is forecast
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to rise at a Compound Annual Growth Rate (CAGR) of 43%, reaching close to

107 exabytes per month by the end of 2023. Today mobile networks cover around

95% of the world population and this figure continues to grow [4].

Currently, a 4G connection generates nearly four times more traffic than a 3G

connection. There are two reasons for the higher usage per device on 4G. The first

is that many 4G connections today are for high-end devices, which have a higher

average usage. The second is that higher speed encourages the adoption and usage

of high-bandwidth applications. By 2021 a 4G connection will still generate two

times more traffic than a 3G connection [2].

Every time we turn on our cellphones there is data being generated. In order

for telecommunication operators (telco) to do an optimized and accurate manage-

ment of the network, they collect every data generated by the cells, in the context

of this work LTE cells. The collected data is raw; since it has not been processed

yet, it does not contain useful information. Afterwards raw data is processed and

aggregated to generate key performance indicators (KPIs). Each KPI represents

a specific behaviour of the network, giving telecommunication operators a per-

spective of the networks whole behaviour, for network management this is core.

Knowing the future behavior of networks is vital for its management.

This work will use LTE capacity KPIs, each one will be represented by a set of

time series. The prediction of future values for those time series will be made by

several different models, whose results will then be compared in order to determine

the best forecasting model for a given KPI.

Concerning its structure, the second chapter addresses the review of published

related work regarding predictive models, accuracy measures and specific articles

where forecast models have been applied to networks, namely LTE.

Chapter 3, describes tools used to elaborate this study. It characterizes the

data, predictive models, and the measures used to determine the accuracy of the

forecasts.
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Chapter 4 is dedicated to the practical part of the present study, how the study

was conducted, the necessary decision making and the obtained results, as well as

its analysis.

The last chapter, chapter 5 will showcase the conclusions taken from this study

and present the future work.
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Chapter 2

Related Work

2.1 Introduction

Analytics is an area of research that aims to discover, analyse and interpret

meaningful patterns present in data. This field is still growing and this is the

reason why there are so many studies from so many different areas related to

forecasting. Data forecasts are made by applying predictive models to the data

under study and these models will in turn try to find patterns namely seasonal,

trend or even both in order to achieve better results.

This chapter will describe related work on predictive models, accuracy measures

and selection, and studies regarding network forecasting, specifically Long Term

Evolution (LTE).

2.2 Studies on predictive models

Predictive models have been the subject of much research in the second half of

the last century, and its interest continues to grow nowadays.

Forecasts are divided into two groups, they can either be point forecasts or

prediction intervals. Point forecasts are made by extrapolating the future values
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of a time series through a line, whereas prediction intervals forecasts result in

intervals of trust for future values, which can be achieved by the use of state space

models. The present work only regards point forecasts for n-steps ahead.

Time series is the name given to the collected data for forecasting. Time Series

prediction represent an important area of forecasting, in which past observation

of the same variable are collected and analyzed to develop a model describing the

underlying relationship. The model is then used to extrapolate the time series into

the future [5].

The interest of the scientific community in the prediction area has resulted in

the creation of many different forecast models, that vary in their intricate com-

plexity. The simplest methods comprise average, naïve, seasonal naïve and drift

which will be later described in this document.

Despite their simplicity these methods are many times used as a form of bench-

mark for other more evolved models, seasonal naïve was even used in the M-

competitions [6], but these models may not be considered to develop a forecast

mechanism.

This study will rely on the analysis of more complex models which will also be

described later in this document. These models encompass a set comprised of Ex-

ponential Smoothing (ES), AutoRegressive Integrated Moving Average (ARIMA),

Theta, Linear Regression and also the models that resulted from the latest M4-

Competition.

The set of used models in the present study stands for the successful results

obtained by each of them. Predictive models are still evolving and their complex-

ity continues to increase, examples of this are Neural Networks (NN) and native

Machine Learning (ML), these types of models were not considered in the present

study.
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2.3 Studies on accuracy measures and model se-

lection

There are many different ways to select a model given a time series, it will

always depends on the time series at hand and on the purpose of the forecast.

Forecasting accuracy is of obvious importance to users of forecasts because fore-

casts used to guide decisions [7].

Next will be presented some of the most used and well-known ways of selecting

a given prediction model.

2.3.1 Accuracy Measures

Forecasts accuracy is of vital importance whether to confirm a models adequacy

to a certain time series or to rule it out, declaring it as not fit for the time series

under study. This field of study has started not long after the start of usage of

predicting models, in 1969 by the work of Reid and Newbold and Granger in 1974

[6]. Though Makridakis and Hibon (1979) made the first effort to compare a large

number of major time series methods across multiple series [6].

These tests evolved into M-Competition, M3-Competition, and later M4 Com-

petition, which tested many different models, using several different time series,

and compared the results applying different accuracy measures. However they

have reached some criticized conclusions when addressing the models accuracy,

the four most important conclusions are as follows:

• For previous M-Competitions statistically sophisticated or complex meth-

ods did not necessarily provide more accurate forecasts than simpler ones,

although M4 brings new light on this particular matter by M4 Competition

this conclusion became half truth since the best model was one of the most

complex presented there. The forecasting accuracies of simple methods, such

as the eight statistical benchmarks included in M4, will not be too far from
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those of the most accurate methods. This is only partially true. On the one

hand, the hybrid method and several of the combination methods all outper-

formed COMB, the statistical benchmark, by a percentage ranging between

9.4% for the first and 5% for the ninth. These percentages are higher than

the 4% improvement of the best method in the M3 relative to the Comb

benchmark. On the other hand, the improvements below the tenth method

were lower, and one can question whether the level of improvement was

exceptional, given the advanced algorithms utilized and the computational

resources used [1].

• The relative ranking of the performance of the various methods varies ac-

cording to the accuracy measure being used [6];

• The accuracy when various methods are being combined outperforms on

average the individual methods by themselves [6];

• The accuracy of the various methods depends on the length of the forecasting

horizon involved [6].

These conclusions are valid for all of M-Competitions.

In 2017 the M3-Competition had an improvement on the extent of their results,

comparing ARIMA with ML models, showed that ARIMA still outperforms ML

models [8]. M4 competition also regards this issue and yet Machine Learning

methods produce worse results than combination models.

One innovation of the M4 was the introduction of ten standard methods (both

statistical and Machine Learning) for benchmarking the accuracy of the methods

submitted to the competition [1].

One of the major findings of the competition, was the demonstration that none

of the pure ML used managed to outperform Comb and that only one of them was

more accurate than the Naive2 [1].

An example of critique of M-Competitions might be found in the work of Hyn-

dman and Koehler [9]. Here the authors present many of the measures used in
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such competitions, pointing why despite the usefulness of the M-competition, they

should have been done differently, namely using other accuracy measures, since

most of them have problems regarding infinite results and scale dependency error

calculation.

Moreover, the M4-Competition used Symmetric Mean Absolute Percentage Er-

ror (sMAPE) and Overall Weighted Average (OWA) of the relative sMAPE and

the relative Mean Absolute Scaled Error (MASE) for accuracy comparison.

The combination of methods was the king of the M4. Of the 17 most accurate

methods, 12 were “combinations” of mostly statistical approaches [1].

The biggest surprise was a “hybrid” approach that utilized both statistical and

ML features. This method produced both the most accurate forecasts and the

most precise PIs, and was submitted by Slawek Smyl, a Data Scientist at Uber

Technologies[1].

2.3.2 Diebold Mariano Test

There is also the work of Diebold and Mariano (1995) - the Diebold Mariano

Test (DM) [7]. The essence of the DM approach is to take forecast errors as primi-

tives, intentionally, and to make assumptions directly on those forecast errors [10].

This test consists of comparing the predictive accuracy of two forecasts. Forecast

models predict future values of the same time series, associated with the forecast

values there is a loss function g(eit) which is zero when no errors are made, its

value is always equal or greater then zero and it increases in size as errors became

large in magnitude. Loss differential between two forecasts is defined by:

dt = g(e1t)− g(e2t) (2.1)
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The test consists of a null hypothesis where the two forecasts have the equal

accuracy only if the loss differential equals zero:

H0 : E(dt) = 0H1 : E(dt) 6= 0 (2.2)

This method can be applied to a very wide range of class of loss functions.

Comparison of forecast accuracy is but one of many diagnostics that should be

examined when comparing models. The superiority of a particular model in terms

of forecast accuracy does not necessarily imply that forecasts from other models

contain no additional information [7]. Diebold in the revision of 2015 states that

the DM test was intended for comparing forecasts; it has been, and remains, useful

in that regard. The DM test was not intended for comparing models [10].

2.3.3 Akaike’s Information Criterion (AIC)

AIC = T log

(
SSE

T

)
+ 2(k + 2) (2.3)

where T is the number of observations used for estimation, k is the number

of predictors in the model and SSE is the minimum sum of squared errors,

SSE =
∑T

t=1 e
2
t

The model with the minimum value of the AIC is often the best model for

forecasting [11]. In the AIC, as more parameters are added to the model, the first

term becomes smaller, representing an increased fit, whereas the second compo-

nent, or penalty term, becomes larger [12]. Indeed, when the sample is large, the

number of adjustable parameters makes a negligible difference, and more complex

models will be favored (Forster and Sober, 1994) [12].
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2.3.4 Corrected Akaike’s Information Criterion (AICc)

For small values of T , the AIC tends to select too many predictors, and so a

bias-corrected version of the AIC has been developed [11],

AICc = AIC +
2(k + 2)(k + 3)

T − k − 3
(2.4)

Note that in this case the inclusion of branch lengths as estimated parameters can

change the order of the AICc values, and therefore, the selected model [12].

2.3.5 Bayesian Information Criterion (BIC)

Schwarz’s Bayesian Information Criterion (BIC) dates from 1978 and was de-

veloped as an approximation of the log marginal likelihood of a model. A related

measure is Schwarz’s Bayesian Information Criterion (usually abbreviated to BIC):

BIC = T log

(
SSE

T

)
+ (k + 2)log(T ) (2.5)

As with AIC, minimizing the BIC is intended to give the best model. The model

chosen by the BIC is either the same as those chosen by the AIC, or one with

fewer terms [11].

In this study only accuracy measures were considered for model accuracy.

Nonetheless it is important to mention that there are other methods.
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2.4 Studies on Long Term Evolution (LTE) and

capacity forecasting

The last of the reviewed literature is the core of the future presented work. In

the last decades the wireless telecommunications have had a continuous gigantic

growth.

There has been a phenomenal growth in the wireless industry-widespread tech-

nologies, increasing variety of user-friendly and multimedia-enabled terminals and

wider availability of open source tools for content generation that encouraged user-

centric networks resulting in a need for efficient network design [3].

In 1979 the first (1G) commercial cellular network was launched in Japan based

on the Nordisk Mobil Telefoni (NMT) standard which had been developed in the

north European countries. A digital cellular standard known as Global System for

Mobile Communications (GSM; originally Groupe Special Mobile) was founded in

1987 and became the standard for 2nd generation (2G) cellular system, improving

modulation, voice and security service as compared to 1G analog system. The

3rd generation Partnership Project (3GPP) and 3GPP2 were founded in 1998

from groups of telecommunication associations to develop the 3rd generation (3G)

cellular standard based on CDMA technology [13]. Code Division Multiple Access

(CDMA) is a channel access method that supports multiple access.

As the CDMA based network reached its limit in accommodating rapidly in-

creasing demand for wireless data traffic, 3GPP decided to develop a standard

based on a new access technology, which is called Long Term Evolution (LTE).

LTE adopted Orthogonal Frequency Division Multiplexing (ODFM) instead of

CDMA as multiple access technology, in order to efficiently support wide band

transmission. In addition the use of Multiple-Input Multiple-Output (MIMO)

techniques, which plays an important role in improving the spectral efficiency [13].
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The main advantages of LTE are high throughput, low latency, plug and play,

FDD and TDD. LTE downlink transmission scheme is based on Orthogonal Fre-

quency Division Multiple Access (OFDMA) – which converts the wide-band fre-

quency selective channel into a set of many at fading subchannels [14].

As already presented LTE is the most used mobile network in the world [3],

predicting its capacity is crucial for any organization present in the telecommunica-

tion market, since forecasts are used to make decisions, and network management

is a critical process.

The research did not find many papers on network forecasting subject. Though

there is a study on data analytics for forecasting cell congestion on LTE Networks

[15], that applies the Auto Regressive Integrated Moving Average to a set of four

weeks of LTE data and compares its performance to naïve model only through

the result of Mean Squared Error. However, this might be a good measure, it is

insufficient to test and measure the accuracy of models, besides the obvious lack

of data.

From 2012 there is a paper regarding a modified ARIMA model for Channel

Quality Indicator prediction in LTE-based Mobile satellite communications [16].

However, it does not address forecasting LTE networks issue, and although it

applies ARIMA model for forecasting, does not regard any other predictive model

neither it validates its accuracy.

From 2018 there is a paper regarding a comparative analysis of telecommuni-

cation network traffic forecasting using a three model approach [17]. However this

paper was the closest and related to what will be done in this study, the paper

regards 3G uplink instead of LTE and lacks a correct comparison between models.

Whilst ARIMA accuracy was measured using Root Mean Squared Error (RMSE),

Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE),

the other model Elman Neural Network (ENN) and Multilayer Perceptron (MLP)

used Mean Squared Error (MSE) and Root Mean Squared Deviation (RMSD),

and these were never compared to ARIMA at least in the same accuracy measure.
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In 2019 a study using ARIMA, Exponential Smoothing, Theta, Linear Trend

and Random walk, shows that despite no method dominates the others across all

time series of prediction horizons, exponential smoothing and ARIMA models are

good alternatives to forecast this type of data. Combining forecasts generated by

these models is also a sensible option. The forecasting models are also rather robust

to abrupt shifts in network traffic due to changes in the network configuration [18].
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Chapter 3

Methodology

3.1 Data Characterization

The data sets used in this study are from LTE capacity Key Performance

Indicators (KPI) and were collected from a telecommunication company located

in the north of Europe. This data presents a daily frequency and was collected

from LTE cells during a whole year.

In order to carry out this study six capacity KPIs were considered. There is

a total of 468 series, divided among the KPIs. Each Key Performance Indicators

contains seventy eight cells, or in other words seventy eight series, and since the

collected data corresponds to daily data, and was collected for one year, each series

should be comprised of 365 days.

Presented below is a short description for each of the selected KPIs with a plot

of a cell, that represents most of the cells that make up the entire KPI behaviour.
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• Amount of User Equipment (UE) connected to the cell. This KPI is an

average;

Figure 3.1: A series from Average UE’s connected KPI

• Requests to network access made by user equipments during random access

procedure. This KPI is a ratio hence the values are presented in percentages;

Figure 3.2: A series from Request to network access by UE’s KPI
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• The maximum number of active user equipment’s per cell;

Figure 3.3: A series from maximum number of active UE’s per cell KPI

• The maximum number of connected user equipment’s per cell;

Figure 3.4: A series from maximum number of connected user equipment’s
per cell KPI
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• Allocation of the transport channel for user data downlink. This KPI is a

ratio, consequently its values are presented by a percentage;

Figure 3.5: A series from allocation of the transport channel for user data
downlink KPI

• Allocation of transport channel for data uplink. This is also a ratio.

Figure 3.6: A series from allocation of the over the air transport channel for
user data uplink KPI
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3.2 Forecasting Models

In this work several forecasting models were used in order to validate which

model or which combination of models could better adapt to a given data set.

The used models can be grouped as follows:

• Benchmark, which will comprise Naïve, Seasonal Naïve and Drift methods;

• Exponential Smoothing which will regard the different aspects of this family

of models;

• ARIMA;

• Theta;

• Linear Trend;

• Finally the M4 models section which will reprise all M4 models considered

in this study.

3.2.1 Benchmark

These are the simplest models applied to the collected data. They comprise

three models which will be presented.

3.2.1.1 Naïve

The naïve method predicts the future values of a time series y as being equal

to the last recorded value on it [11].

ŷT+h|T = yt (3.1)
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3.2.1.2 Seasonal Naïve

Naïve method has a derivation, for seasonal naïve, where instead of the last

value, it is considered the last season to be forecast.

ŷT+h|T = yt + h−m(k + 1) (3.2)

where m represents the seasonal period and k is the integer part of h−1
m

, h

being the number of steps ahead [11].

3.2.1.3 Drift

The last of these models is the drift model. This is a variation on the naïve

method that allows forecasts to increase or decrease over time. The amount of

change over time is called drift.

ŷT+h|T = yt +
h

T − 1

T∑
t=2

(yt − yt−1) = yt + h
(yt − y1)
T − 1

(3.3)

3.2.2 Exponential Smoothing

Exponential Smoothing was proposed in the late 1950s (Brown 1959; Holt

1957; Winters 1960), and has motivated some of the most successful forecasting

methods [19, 20].

Holt-Winters exponential smoothing is a popular approach to forecasting sea-

sonal time series. The robustness and accuracy of exponential smoothing methods

have led to their widespread use in applications where many series necessitate an

automated procedure, such as inventory control [21]. Exponential smoothing is a

simple and pragmatic approach to forecasting, whereby the forecast is constructed

from an exponentially weighted average of past observations [22].
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3.2.2.1 Simple Exponential Smoothing

The simplest of the exponentially smoothing methods was developed by R. G.

Brown during World War II (1944), to model the trajectories of bombs fired at

submarines, though its work was only published in 1959 [19, 23]. This method is

suitable for forecasting data with no clear trend or seasonal pattern.

ŷT+1|T = αyT + α(1− α)yT−1 + α(1− α)2yT−2 + ... (3.4)

consider yT an observed value at time T , α is the smoothing parameter as

follows 0 6 α 6 1, and ŷT+1|T represent the one-step-ahead forecast value.

The one-step-ahead forecast for time T +1 is a weighted average of all of the

observations in the series y1. . . yt. The rate at which the weights decrease is

controlled by the parameter α [11].

When α = 1 the method behaves like the naïve method, forecast of future

values will be equal to the last value recorded in the time series.

3.2.2.2 Trend methods

Extended the simple exponential smoothing to allow the forecast of data with

a trend. This was developed in 1957 by Holt [9]. This method involves a forecast

equation and two smoothing equations (one for the level and one for the trend) [11].

ForecastEquation : ŷt+h|t = lt + hbt (3.5)

LevelEquation : lt = αyt + (1− α)(lt−1 + bt−1) (3.6)

TrendEquation : bt = β∗(lt − lt−1) + (1− β∗)bt−1 (3.7)

consider lt to be the estimate of the level of the series at time t, bt is an

estimate of the trend (slope) of the series, α is the smoothing parameter,

0 6 α 6 1 and β∗ is the smoothing parameter for the trend, 0 6 β∗ 6 1.
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lt is a weighted average of observation yt and the one step ahead training

forecast for time t.

bt is a weighted average of the estimated trend at time t base on lt− lt−1 and

bt−1, the previous estimate of the trend. The forecast function is trendy.

The h-step-ahead forecast is equal to the last estimated level plus h time the

last estimated trend value hence the forecasts are a linear function of h.

Damped Trend methods

Forecasts generated by Holt’s linear trend method display a constant trend

(increasing or decreasing) indefinitely into the future. This methods tend to over-

forecast, especially for longer forecast horizons [11]. Motivated by this observation,

Gardner and McKenzie (1985) introduced a parameter that "dampens" the trend

to a flat line some time in the future [11].

ForecastEquation : ŷt+h|t = lt + (θ + θ2 + ...+ θh)bt (3.8)

LevelEquation : lt = αyt + (1− α)(lt−1 + θbt−1) (3.9)

TrendEquation : bt = β∗(lt − lt−1) + (1− β∗)θbt−1 (3.10)

θ is the damped parameter if θ = 1 the method is identical to Holt’s Linear

Method.

For 0 6 θ =< 1, θ dampens the trend so that if approaches a constant some

time in the future.

3.2.2.3 Seasonal method

The Holt Winters seasonal method (1960) is an extent to Holt’s method, that

captures seasonality. This method comprises the forecast equation and three

smoothing equations (one for level lt, one for the trend bt, and one for seasonal

component st).
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There are two variations on this method that differ in the nature of the seasonal

component - additive or multiplicative.

The additive method is preferred when seasonal variations are roughly constant

through the series. With the additive method, the seasonal component is expressed

in absolute terms in the scale of observed series and in the level equation, the series

is seasonally adjusted by subtracting the seasonal component [11]. Within each

year, the seasonal component will add up to approximately zero [11].

The multiplicative method is preferred when seasonal variations are changing

proportionally to the level of the series [11].

Additive Method

ForecastEquation : ŷt+h|t = lt + hbt + st+h−m(k+1) (3.11)

LevelEquation : lt = α(yt − st−m) + (1− α)(lt−1 + bt− 1) (3.12)

TrendEquation : bt = β∗(lt − lt−1) + (1− β∗)bt−1 (3.13)

SeasonalEquation : st = γ(yt − lt−1 − bt−1) + (1− γ)st−m (3.14)

where k is the integer part of (h−r)
m

, which ensures that the estimates of

seasonal indexes are used for forecasting from the final year of the sample.

The level equation shows a weighted average between the seasonally adjusted ob-

servation yt − st −m and the non-seasonal forecast lt−1 + bt−1 for time t.

The trend equation is equal to the Holt’s linear method. The seasonal equation

shows a weighted average between the current seasonal index yt − lt−1 − bt−1, and

the seasonal index of the same season last year (m periods ago).

A small value of β∗ for the additive model means the slope component hardly

changes over time [11].
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Multiplicative Method

ForecastEquation : ŷt+h|t = (lt + hbt)st+h−m(k+1) (3.15)

LevelEquation : lt = α
yt
s t−m

+ (1− α)(lt−1 + bt− 1) (3.16)

TrendEquation : bt = β∗(lt − lt−1) + (1− β∗)bt−1 (3.17)

SeasonalEquation : st = γ
yt

(lt−1 + bt−1)
+ (1− γ)st−m (3.18)

where s refers to the seasonality, k is the integer part of (h−r)
m

, m defines

the frequency of seasonality, for example, the number of seasons in a year -

quarterly data m = 4, monthly data m = 12.

γ is the restriction parameter which is defined like 0 6 γ 6 1− α

A small value of γ for multiplicative model means that the seasonal compo-

nent hardly changes over time [11].

3.2.2.4 Holt-Winters’ Damped Method

Damping is possible in both multiplicative and additive Holt Winters’ methods.

A method that often provides accurate and robust forecasts for seasonal data is

the Holt Winters’ method with damped trend and multiplicative seasonality [11]:

ForecastEquation : ŷt+h|t = [lt + (θ + θ2 + ...+ θh)bt]st+h−m(k+1) (3.19)

LevelEquation : lt = α(
yt
st−m

) + (1− α)(lt−1 + θbt− 1) (3.20)

TrendEquation : bt = β∗(lt − lt−1) + (1− β∗)θbt−1 (3.21)

SeasonalEquation : st = γ
yt

(lt−1 + θbt−1)
+ (1− γ)st−m (3.22)

The Hyndman, Koehler, Snyder, and Grose (2002) taxonomy (extended by

Taylor, 2003) provides a helpful categorization for describing the various methods.
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Each method consists of one of five types of trend (none, additive, multiplicative,

and damped multiplicative) and one of three types of seasonality (none, additive,

and multiplicative). Thus, there are 15 different methods, the best known of which

are Simple Exponential Smoothing with no trend and no seasonality, Holt’s linear

method (additive trend, no seasonality), Holt-Winters’ additive method (additive

trend, additive seasonality), and Holt Winters’ multiplicative method (additive

trend, multiplicative seasonality) [20].

3.2.3 AutoRegressive Integrated Moving Average (ARIMA)

AutoRegressive Integrated Moving Average models provide another approach to

time series forecasting. Early attempts to study time series particularly in the 19th

century were generally characterized by the idea of a deterministic world. It was

the major contribution of Yule (1927) which launched the notion of stochasticity in

time series by postulating that every time series can be regarded as the realization

of a stochastic process [20].

This model had a great contribution by Box and Jenkins (1970) [20].

There are two important concepts regarding ARIMA models: stationarity and

differencing.

Stationary Time Series

A stationary time series is time series where properties do not depend on the

time at which the series is observed - time series with seasonality or trend are not

stationary. A time series with cyclic behaviour can be stationary - if it has no

trend or seasonality [11].

Typically these time series will have no predictive patterns in the long term.

Time plots can show a series to be roughly horizontal. White noise series is

stationary [11].
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Differencing

It is the computation of the differences between consecutive observations. Dif-

ferencing can help stabilize the mean of a time series by removing changes in the

level of a time series, therefore reducing the trend or seasonality of the series [11].

When the differenced series is white noise, the model for the original series can

be written as yt − yt−1 = εt, where εt denotes white noise.

A differenced time series can be easily plotted by its Auto Correlation Function.

If it drops to zero relatively quick the time series is differenced [11].

3.2.3.1 Auto Regression (AR) Models

Autoregressive model forecasts the variable of interest using a linear combina-

tion of past values of the variable. Auto regression indicates that it is a regression

of the variable against itself.

yt = c+ φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt (3.23)

where c represents the average of changes between observations, φ the trend

damped factor and εt denotes white noise. This is an AR(p) model, an

autoregressive model in order of p and is like a multiplicative regression but

with lagged values of yt as predictors.

Autoregressive models are remarkably flexible at handling a wide range of dif-

ferent time series patterns.

3.2.3.2 Moving Average (MA) Models

Rather than using past values of the forecast variable in a regression, a moving

average model uses past forecast errors in a regression like model:

yt = c+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q (3.24)
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this is called a moving average of order q, MA(q), where εt denotes white

noise, c is the average of changes between observations as in AR and θ is the

number of lags.

Each value of yt can be thought as a weighted moving average of the past

few forecast errors.

3.2.3.3 Non Seasonal Models

Non-seasonal ARIMA is the combination of differencing, autoregression and

moving average.

y′t = c+ φ1y
′
t−1 + ...+ φpy

′
t−p + θ1εt−1 + ...+ θqεt−q + εt (3.25)

where y′t is the differenced series, p the order of the autoregressive part, d is

the degree of first differencing part and q is the order of the moving average

part.

3.2.3.4 Seasonal Models

ARIMA models are capable of modelling a wide range of seasonal data. Sea-

sonal ARIMA model is formed by including additional seasonal terms in the

ARIMA models.

Non− Seasonal : ARIMA(p, d, q) (3.26)

Seasonal : ARIMA(p, d, q)(P,D,Q)m (3.27)

where m stands for the number of observations per year. Uppercase de-

notes the seasonal part, while lower case is used for non-seasonal part of the

model. The additional seasonal terms are just multiplied by the non-seasonal

terms [11].
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The popularity of the ARIMA models is due to its statistical properties as well

as the well-known Box- Jenkins methodology. In addition, various exponential

smoothing models can be implemented by ARIMA models. Although ARIMA

models are quite flexible in that, they can represent several different types of

time series, their major limitations is the pre-assumed linear form of the model.

That is, a linear correlation structure is assumed among the time series values

and therefore, no nonlinear patterns can be captured by the ARIMA model. The

approximation of the linear models to complex real-world problem is not always

satisfactory [5]. SARIMAX is a particular case of Seasonal AutoRegressive In-

tegrated Moving Average (SARIMA), which uses external variables - Exogenous

Regressors.

The present study calculated the forecasts of ARIMA model by using a value

o 2 for both the AR term and MA term, and using one differencing required to

make the time series stationary, hence:

ARIMA(2, 1, 2). (3.28)

3.2.4 Linear Trend

Regression analysis is primarily used for predicting values of the response vari-

able at interesting values of the predictor variables, discovering the predictors

that are associated with the response variable, and estimating how changes in

the predictor variables affects the response variable [24]. A linear regression is

an approach to modelling a relationship between a dependent variable and one or

more independent variables, depending on it being one or more the regression is

called simple or multiple linear regression. In this study a simple linear regression

was used. To better adapt the obtained forecasts the used method also applies

the least squares method applied to the slope. The least-squares method can be

used to compute reliable realizations of the minimum-variance unbiased estimates

for linear regression models, and the conjugate gradient method is a very effective

iterative algorithm for solving the related normal equations system [25].
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3.2.5 Theta

The Theta-model proposes a different approach to decomposition: a decompo-

sition of the seasonally adjusted series into short and long term components [25].

Theta challenge was to increase the degree of exploitation of the embedded use-

ful information in the data, before the application of a forecasting method. Viewed

intuitively, such information has long and short term components. These compo-

nents are identified using the Theta-model and are then extrapolated separately.

The Theta-model is analogous to the operation of a magnifying glass though which

the time series fluctuations are minimized or maximized accordingly [25].

The model is based on the concept of modifying the local curvatures of the time

series. This change is obtained form a coefficient, called Theta coefficient, which

is applied directly to the second differences of the time series [25].

If the local curvatures are gradually reduced then the time series is deflated.

The smaller the value of the Theta-coefficient, the larger the degree of deflation. In

the extreme case where Θ = 0 the time series is transformed to a linear regression

line [25].

Conversely if the local curvature is increased (Θ > 1), then the time series

is dilated. The larger the degree of dilation, the larger the magnification of the

short-term behaviour [25].

The initial time series is decomposed into two or mode Theta-lines. Each of the

Theta-lines is extrapolated separately and the forecasts are simply combined. Any

forecasting method can be used for the extrapolation of a Theta-line. A different

combination of Theta-lines can be employed for each forecasting horizon [25].

The strong point of the method lies in the decomposition of the initial data. The

two components include information, which is useful for the forecasting procedure

but is lost of cannot completely be taken into account by the existing methods

when they are directly applied to the initial data [25].
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3.2.6 M4 Models

M4 was the latest edition of M competition, which had some surprising results

involving the participating models.

M4 contestants were advised to publish the code which had been used for

forecasting, some of the models became available on GitHub, and thanks to this

fact, some of the models of in the M4 competition were used in this study. Table

3.1 shows the selection that was made.

In the M4 competition all models performed both point forecasts and intervals

of confidence, however in the present study only point forecasts are considered,

consequently these models were only used and compared based on such forms of

forecast.

Overall
Standings

Type
of

Model
Author Organization ID

1st Hybrid Smyl, S. Uber Technologies Slaweks

2nd Combination

Montero-Manso, O.,
Talagala, T.,
Hyndman R. J. &
Athanasopoulos, G.

University of Coruña &
Monash University Pmontman

3rd Combination
Pawlikowski, M.,
Chorowska, A. &
Yanchuk, O.

Prologistica Soft Prologistica

5th Combination Fiorucci, J. A. &
Louzada, F.

University of Brasilia &
University of São Paulo Gatech

8th Statistical Legaki, N. Z. &
Koutsouri, K.

National Technical
University of Athens KaterinaKou

11th Statistical Spiliotis, E. &
Asimakopoulus, V.

National Technical
University of Athens Vangspiliot

Table 3.1: Models selected from M4 competition

The first four selected models reflect their standings in the competition. Despite

being advised, not all participants provided their code - the 4th best qualified model

is an example of such behaviour. The last two models present in the table were

selected because of their different nature, being statistical instead of a combination.

In the M4 competition all models provided point forecasts and prediction in-

tervals, though as already stated before in this study, only point forecasts are to
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be considered. Moreover, all models provided several different horizons, namely

hourly, daily, monthly, quarterly and yearly, yet the models used here were only

forecasting daily data.

The best modules of the M4 competition will have a detailed description in a

future release of the International Journal Of Forecasting (IFF), however the next

section will contain the description for each of the used modules.

3.2.6.1 Slaweks1

This model was tried and tested in the current study. Nonetheless, due to its

heavy time consumption to generate forecasts, it was discarded.

This hybrid model combines Exponential Smoothing (ES) formulas, with a

black-box Recurrent Neural Network (RNN) forecasting engine. The models do

not constitute an ensemble of Exponential Smoothing (ES) and Neural Networks

(NN), instead, they are truly hybrid algorithms in which all parameters, like the

initial ES seasonality and smoothing coefficients, are fitted concurrently with the

NN weights by the same Gradient Descent method [26].

Generally, NN do not have a great track record in time series forecasting.The

models described here try to solve this problem by being hierarchical – partly time

series specific and partly global [26]. Seasonal models use algorithms inspired by

Holt-Winters multiplicative seasonality, either single, or, in case of the hourly

series, double seasonal (24 and 168). In the former case, the update formulas are:

lt =
α ∗ yt
st

+ (1− α) ∗ lt−1 (3.29)

st+K =
β ∗ yt
lt

+ (1− β) ∗ st (3.30)

where lt is level, yt is value of the series, and st is the seasonality coefficient

at the time t. K is the seasonality size, e.g. 12 for monthly series.α and β
1This model was tried and tested in the current study. Nonetheless, due to its heavy time

consumption to generate forecasts, it was discarded.
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are smoothing coefficients, between 0 and 1, and st > 0. For completeness,

here it is the forecasting formula:

ŷt+1..t+h = RNN(xt) ∗ lt ∗ st+1..t+h (3.31)

where xt is the preprocessed (deseasonalized and normalized) input vector.

The first K seasonal coefficients are also parameters of the model, fitted by

the Gradient Descent. Multiplication in formula 1c is element-wise, bold

letters denote vectors. The RNN forecasts whole horizon at once.

The output size was always equal to the forecasting horizon [26]. The model

does multiple runs which then merges the results to generate an output.

3.2.6.2 Pmontman

A set of 9 forecasting methods is used. These methods are fitted on each

individual series and produce the forecasts at the asked horizon. These forecasts

are linearly combined to produce the final point forecast. The rationale behind the

pool of methods is to use easily available forecasting methods that can be fitted

automatically [26].

The models used in this combination are as follows:

1. The ARIMA model. Parameters like the order of differencing, p, q are

obtained through an exhaustive search;

2. Exponential Smoothing state space model with parameters fitted automati-

cally;

3. A feed-forward neural network with a single hidden layer is fitted to the lags.

The number of lags is automatically selected;

4. The Exponential smoothing state space Trigonometric, Box-Cox transfor-

mation, ARMA errors, Trend and Seasonal components model. Parameters
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like the application of a Box-Cox transformation, to include trend, among

others, are automatically fitted;

5. Seasonal and Trend decomposition using Loess with AR modeling of the

seasonally adjusted series;

6. Random Walk with Drift;

7. The theta method of Assimakopoulos and Nikolopoulos (2000);

8. The naïve method, using the last observation of the series as the forecasts;

9. The forecast are the last observed value of the same season;

In the case of an error when fitting the series (e.g. a series is constant), the

forecast method is used instead [26].

In essence, it is a feature-based gradient tree boosting approach where the

loss or error function to minimize is tailored to the OWA error used in the M4

competition. The implementation of gradient tree boosting is xgboost, a tool that

is computationally efficient and allows a high degree of customization [26].

The final forecasts are calculated by combining the individual forecasts of each

model.

3.2.6.3 Prologistica

The final predictions are weighted averages of forecasts produced by statistical

methods. The following models were used [26]:

1. Naïve;

2. Naïve2 (M4 benchmark);

3. Simple Exponential Smoothing;

4. Exponential Smoothing (with automatic parameters choice);
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5. Damped Exponential Smoothing (automatic);

6. ARIMA (automatic);

7. Simple Theta (modified to never crash on very short series);

8. Optimised Theta;

9. econometric models (linear regression on different types of trend) (custom);

For a given series y the model will take the following steps:

1. Choose a set of models to combine. The selection is based upon y’s character-

istics: period (Yearly, Daily, etc.), existence of seasonality and/or trend [26];

2. Using the chosen set of models, it generates one-step-ahead forecasts for the

last N prefixes of y and measure their accuracy according to sMAPE. The

number N depends on y’s period and it is typically slightly smaller than

forecast horizon [26];

3. For each model, summarize errors of different prefixes. The summarization

method is a weighted mean with either equal or exponential weights. This

gives scores that measure performance of chosen models on y’s history [26];

4. From the scores, create a set of weights, that will be used in calculation of

final forecasts. The method of translating scores to weights depends on y’s

period. Usually the weights are squares of inverted scores [26];

5. Calculate future forecasts for y for all models. The final prediction is defined

as a weighted mean of those forecasts, using weights described on previous

step [26].

As stated the model utilizes several common statistical models, which are

weighted according to their performance on historical data.
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3.2.6.4 Gatech

The Gatech model is based on an improvement of Theta model.

The Theta method attracted the attention of researchers by its simplicity and

surprisingly good performance [27].

Theta model was already explained in the present study, so the description of

Gatech will be more dedicated to the improvements made in this version. The

Gatech is based in the findings made in Models for optimising the theta method

and their relationship to state space models [27], here the methods and models

of Theta such as Dynamic Optimized Theta Model (DOTM), Dynamic Standard

Theta Model (DSTM), Optimized Theta Model (OTM), Standard Theta Model

(STM) and Standard Theta Method (STheta) were tested using a subset of data

from M3 Competition, using as benchmark the models present in 3.2.

Method Reference Description
Naïve ARIMA(0,1,0)
SES Brown (1956) ETS(A,N,N)
Damped Gardner and McKenzie (1985) ETS(A,Ad,N)
ETS Hyndman and Khandakar (2008) ETS automatic algorithm based on AICc
ARIMA Hyndman and Khandakar (2008) Automatic ARIMA based on AICc

Table 3.2: Benchmark methods and models used

Models forecasted original data and seasonally adjusted data, the results ob-

tained were then processed using sMAPE and MASE. The results varied according

in conformity with the horizon calculated (yearly, quarterly, monthly, other and

all), although DOTM outperformed the other methods in most cases. The results

showed that the proposed improvement of DOTM was more efficient than the

existing methods and models of Theta.

The DOTM selects the theta line to be used for the extrapolation of the short-

term component of the series optimally [27].

In terms of empirical forecasting performances, DOTM demonstrated improve-

ments over the Theta method to all frequencies and error measures considered [27].
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An important property of DOTM is that when θ = 1, the model behaves like

SES method. When θ > 1 acts as an extension of SES, by adding a long-term

component.

3.2.6.5 KaterinaKou

This methodology is composed of multiple steps in order to produce the final

forecasts:

1. Import the data set;

2. Decompose the time series (if needed) to estimate the seasonal component:

An auto-correlation test is applied for all the series. In case of a positive

result (90% confidence), the series is stripped off their seasonal component

using the classical multiplicative decomposition, and obtain the seasonally

adjusted data.

3. Apply the Box-Cox transformation: On its bases, the Theta method (that

will be used for extrapolating the series) generates linear forecasts. In order

this simple forecasting model to produce reasonable results, even in cases

of nonlinear trend, historical data is adjusted (without the seasonal compo-

nent) using the Box-Cox transformation. The transformation depends on

the parameter λ with values between 0 and 1, defined as follows [26]:

wt =

log(yt) ifλ = 0;

(ytt−1)
λ

otherwise

(3.32)

4. Generate forecasts based on the theta method: The forecasts of each season-

ally adjusted and normalized series are produced using the Theta method;
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5. Reverse Box-Cox transformation: Having generated our forecast, the data is

rescaled using the reverse Box-Cox transformation, which is defined as:

yt =

exp(wt) ifλ = 0;

(λwt + 1)
1
λ otherwise

(3.33)

For the reverse transformation and the calculations, the functions: “InvBox-

Cox()” is used with the respective parameters that have been calculated in

step 3;

6. Re-seasonalization: The scaled forecasts of step 5 are seasonally adjusted

using the respective seasonal indices calculated in step 2, if applicable Final

results are obtained in a single data set, as proposed [26].

3.2.6.6 Vangspiliot

This model uses the Theta Framework (4Theta).

Given the limitations of Theta classic, some modifications were implemented

to generalize its use and enhance its performance for more complex types of data.

This includes mechanisms for considering both linear and non-linear patterns of

trend, adjusting trend intensity, recognizing either additive or multiplicative sea-

sonality, as well as additive and multiplicative connections between the compo-

nents of trend and level [26].

The extensions proposed transform Theta classic into an integrated forecast-

ing framework, 4 Theta, which generates various forecasting models, each one of

different properties. In this respect, using simplified selection criteria, it becomes

possible to identify the best model per time series examined and exploit it for

extrapolation [26].

The Theta method is somewhat limited in its original form as it is forced to

generate forecasts which are linearly related. Additionally, the trend of the fore-

casts is half that of the fitted trend line (a/2). Thus, if the long-term components
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of the data persist in the future, the method will be unable to properly follow

their pattern and result to rather pessimistic or optimistic forecasts, depending

on the sign of the trend. The same stands for damped trend series, where slope

a could be further shrunk to enable a better fit, as well as stationary series for

which classic Theta will assume a pseudo-trend through Y 0, possibly leading to

poor results. In such cases, an optimal θ coefficient could be used in stead of θ = 2

to properly adjust trend intensity [26].

3.2.6.7 Dealing with trend

There are many ways for selecting the optimal coefficient of θ, to do so ef-

ficiently, without significantly increasing the computational cost of the method,

the parameter estimation in this study is based on minimizing the Mean Ab-

solute Error (MAE) [26]. This enables Theta to properly fit the data without

exaggerating [26].

Due to the changes in place the Theta method can presently mime the prop-

erties of more flexible models, namely Damped, Holt (linear trend) and Sim-

ple (insignificant trend) Exponential Smoothing (Gardner, 2006). Moreover,it

can further improve its forecastability by considering non-linearities and expo-

nential growth rates, which for the case of exponential smoothing are limited

captured [26].

3.2.6.8 Additive and multiplicative expression of the Theta method

Many classical forecasting models, are expressed both in a multiplicative and

additive form, meaning that the components of the series (level, seasonality and

trend) may be combined in two different ways and relatively interact [26]. The

Theta method averages the forecasts of SES and regression in time to extrapolate

the data. Thus, the level and trend component are independent from each other

and additively connected.The same stands for seasonal component which, given

that the data are externally seasonally adjusted (if needed), is not directly handled
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by the method itself [26]. The multiplicative expression of the Theta method can

be exploited to handle data displaying multiplicative relations of the level and

trend. In total, after the expansion suggested, the Theta method can generate up

to six models of different properties but similar principles [26]:

1. Negligible seasonality - Additive relations

2. Negligible seasonality - Multiplicative relations

3. Additive seasonality - Additive relations

4. Additive seasonality - Multiplicative relations

5. Multiplicative seasonality - Additive relations

6. Multiplicative seasonality - Multiplicative relations

3.2.6.9 Model Selection

The present model became more flexible and can capture more easily complex

patterns present in the data, special if compared with classical theta. Moreover,

it can also select the best performing model available in Theta framework. There-

fore, for each time series examined, all possible models are estimated through

4 Theta and MAE is applied to determine which one should be selected for

extrapolation [26].
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3.3 Accuracy Measures

This section is dedicated do describe each of the considered accuracy measures

used during the development of the present study.

3.3.1 Scale-dependent measures

• Mean Squared Error (MSE)

MSE = mean(e2t ) (3.34)

• Root Mean Squared Error (RMSE)

RMSE =
√
MSE (3.35)

• Mean Absolute Error (MAE)

MAE = mean(|et|) (3.36)

• Median Absolute Error (MdAE)

MdAE = median(e2t ) (3.37)

The error at time t is given by:

et = y − ŷt (3.38)

where y corresponds to the actual value recorded and ŷt is the forecasted

value, accordingly the error corresponds to the difference between the recorded

value and the forecasted value.

Scale dependent measures have as the category mentions, the problem of being

scale dependent, thereafter errors cannot be compared amongst different scales.
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They are interpreted by value, the smaller the error is closer the forecast is to

best fit. Often RMSE is preferred to the MSE as it is on the same scale as the

data. RMSE and MSE are more sensitive to outliers than MAE or MdAE [9].

3.3.2 Measures based on percentage errors

• Mean Absolute Percentage Error (MAPE)

MAPE = mean(|pt|) (3.39)

• Median Absolute Percentage Error (MdAPE)

MdAPE = median(|pt|) (3.40)

• Root Mean Square Percentage Error (RMSPE)

RMSPE =
√
mean(p2t ) (3.41)

• Root Median Percentage Error (RMdsPE)

RMdsPE =
√
median(p2t ) (3.42)

• Symmetric Mean Absolute Percentage Error (sMAPE)

sMAPE =
100%

n
∗

n∑
t−1

|ŷt − yt|
|ŷt|+ |yt|

(3.43)

where

pt = 100
et
Yt

(3.44)

Percentage errors have the advantage of being scale independent and so are fre-

quently used to compare forecast performance across different data sets. Still

these measures have the disadvantage of being infinite if Yt = 0 for any t in the
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period of interest. It is impossible to use these measures as zero values of Yt occur

frequently [9]. Exception made in the percentage errors to the infinite problem is

sMAPE which has a lower and upper boundary.

3.3.3 Measures based on relative errors

• Mean Relative Absolute Error (MRAE)

MRAE = mean(|rt|) (3.45)

• Median Relative Absolute Error (MdRAE)

MdRAE = median(|rt|) (3.46)

• Geometric Mean Relative Absolute Error (GMRAE)

GMRAE = gmean(|rt|) (3.47)

being

rt =

∣∣∣∣∣ yt − ŷtyt − ŷ∗t

∣∣∣∣∣ (3.48)

ŷ∗t =

 yt−1 Non seasonal

yt−M Seasonal
(3.49)

where M corresponds to the seasonal period.

A serious deficiency of relative error measures is that forecast error can be

small, resulting in relative error with infinite variance [9].

• Mean Absolute Scaled Error (MASE)

MASE = mean(|qt|) (3.50)
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where

qt =
et

1
n−1

∑n
i=2 |Yi − Yi−1|

(3.51)

When MASE<1, the proposed method, on average gives smaller errors than

the one-step errors from the naïve method. If multi-step forecasts are being

computed, it is possible to scale by the in-sample MAE computed from

multi-step naïve forecasts [9]:

MAE =

∑n
i=1 |ei|
n

= mean(|et|) (3.52)
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Chapter 4

Experimental Study

4.1 Handling Data

4.1.1 Preparing data

The forecasting process does not start by applying a model to a given time series

or set of time series, it starts much earlier with an initial analysis of the nature,

purpose, consistency and characteristics of the given data set. In the present study

the set is of daily collected LTE data, that contains the values of an entire year,

as was previously mentioned.

Half of the KPIs regards ratios and the other half measure network volumes,

this is relevant because data that addresses the measurement of volumes is typi-

cally characterized by having seasonal behaviour whereas ratios are usually non-

seasonal.

Knowing this, the next step is to analyse the characteristics of each of the series

presented in all of the used KPIs.

Each series must contain a set of 365 samples, without any blanks or null

values. The used data set did not contain much of null values, rather it had some

missing values instead. When a given day didn’t have an associated value the
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row did not exist entirely - both the date and its value were not present. The

solution implemented for this case, being it a missing value, a blank or null was

substituting or adding (in the case it was missing) the last recorded value, or the

next recorded value in cases where the last was not available.

It is important to mention that some of the used models, namely the models

from M4 competition, have intricate methods to handle missing data, although

the data set provided to each model was the same, in other words, the whole data

set was primarily treated and only then provided to the used models.

4.2 Forecasting

Models were applied to the KPIs according with the data seasonality, thereafter

they have been divided into two groups, seasonal models and non-seasonal models.

The considered seasonal models used were:

• Seasonal Naïve (SNAIVE)

• Exponential Smoothing

– Seasonal Additive without Trend

– Seasonal Multiplicative without Trend

– Seasonal Additive with Additive Trend

– Seasonal Multiplicative with Multiplicative Trend

– Seasonal Multiplicative with Additive Trend

– ARIMA

– SARIMAX

• Theta

• Linear Trend
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The considered non-seasonal models used were:

• Naïve

• Drift

• Exponential Smoothing

– Simple Exponential Smoothing

– Non-Seasonal without Additive Trend

– Non-Seasonal without Multiplicative Trend

M4 models are not part of this preselection since they were always applied

regardless of data seasonality.

4.2.1 Autocorrelation Function

As previously stated forecasts had some constraints regarding data seasonality,

only if a majority of the series on each of the KPI was seasonal or non-seasonal a

specific type of forecast model was applied.

Just as correlation measures the extent of a linear relationship between two

variables, autocorrelation measures the linear relationship between lagged values

of a time series [11].

To determine the seasonality of each series the Auto-Correlation Function

(ACF) was applied to each series and the result plotted.

When data are seasonal, the auto-correlations will be larger for the seasonal

lags (at multiples of the seasonal frequency) than for other lags [11].

Below are the plots of ACF, that show seasonal behaviour on the series.
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Figure 4.1: Plot of the autocorrelation function of a time series from the
Average UE’s connected KPI

Figure 4.2: Plot of a seasonal autocorrelation function of a time series from
the maximum number of active UE’s per cell KPI
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Figure 4.3: Plot of a seasonal autocorrelation function of a time series from
the maximum number of connected UE’s per cell KPI

All the autocorrelations presented represent the ACF function of the large

majority of the time series of each of the KPIs analysed. The seasonal behaviour

confers the plot with a scalloped look, with peaks according to the seasonality

representation - in all of three plots is lagged seven spaces, which indicates a

weekly seasonality of the series.

4.2.2 Expanding window

Once the seasonality of the KPIs was defined the models could be applied.

The forecast process was incremental and iterative, since some conditions evolved

over time, namely the number of analysed models.

For some time, forecasts were calculated using a sample of 350 days per series.

Each model would only forecast fifteen days for each series - this was a fast process,

although the results were not much consistent.

49



Chapter 4 Experimental Study Forecasting the capacity of LTE mobile Networks

In order to achieve reliable results as to the performance of each model, the

expanding window method was applied. At the time the decision for the future

forecasts was to be between Rolling Window or Expanding Window.

In the Rolling or Sliding window methodology, the models would always have a

train set with the same number of samples (length), that would move as forecasts

were made - for instance in the current study forecasts would always be made

using a 250 days window.

As in the Expanding Window the train set expands as forecasts were to be

made, consequently models would start with a 250 days window, and would end

up with a 350 days window. Since in this method models do not lose any data, and

in the current study only a year of data is available for each cell, this methodology

seemed to be better hence it was chosen for train the models.

Models were trained using an initial set containing 250 samples, and forecasts

were calculated until the training set contained 350 samples. For each new iteration

a day was added to the training set and forecasts were calculated. Each model

performed this loop 100 times, creating each time forecasts with an horizon of 15

days for each cell.

4.3 Results and Analysis

Once the forecasts were produced a mandatory working of organising the results

was necessary, since models produced forecasts in different formats.

It is worth mentioning, before continuing, that each Key Performance Indicators

was treated individually.

It was necessary that for each model and KPI the results were aggregated by

cell, and since each cell was forecasted 100 times, ordered from the first forecasted,

which has the smaller expanding window to the largest, the same is saying that

the first forecast of any given cell would be the one which used the 250 sample

historic, and the last the one which used the 350 samples of historic values.
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4.3.1 Criteria

As already presented (chapter 3), many were the accuracy measures considered

during the development of this study. As the study was evolving, they were all

calculated and analysed. However the continuous improvement of the present

work, was important to reduce their number for analysis purposes, considering that

having a large number of measures would not only be costly in terms of calculation

time but also the would not help in the subsequent analysis. Having that in mind,

the list was incrementally shortened, until only two measures were remaining -

Mean Absolute Scaled Error and Symmetric Mean Absolute Percentage Error.

The choice of these two accuracy measures rely on their independence of data

scale and the fact that in the case of sMAPE it was already used in previous

M-Competitions, and the fact that it is more reliable than MAPE.

MASE in the other hand was recommended on Other look at measures of fore-

cast accuracy (R. J. Hyndman and A. B. Koehler, 2006), and later was also used

in the M4 Competition.

These accuracy measures offer the possibility of comparing the results of the

forecasts in an easy, simple and most of all reliable form.

It is important to take into special consideration that due to the analysed results

of both measures, but with an emphasis regarding MASE, being themselves the

result of several iterations through the original calculated accuracy, hence the

values of MASE tend to usually be over 1, which would indicate a less performing

model - hence the value of MASE is considered without giving much importance

of its scale.

Models will be compared by the results they achieved in both measures, though

sMAPE will be used as a validator of MASE.

Each cell was forecasted using an horizon of 15 days, once the results were

obtained and arranged, each forecast was divided then into four different horizons,

one day, five days, ten days and 15 days horizons.
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For each of those horizons the respectively sMAPE and MASE were calculated

- this process allows the identification of a better model for each of the used

horizons, hence it was possible for multiple models to perform better in the same

KPI, according to the analysed horizon.

4.3.2 Results

This section is dedicated to present the results obtained from the accuracy

measures. They will be separated according with the seasonality. For each KPI the

forecasting horizons will be analysed separately and each horizon will comprise two

graphs (regarding the accuracy measures) and a table that stage both measures.

4.3.2.1 Seasonal KPIs

• Average of UE’s connected

One Day Horizon

Figure 4.4: Accuracy measured using MASE for the average UE’s connected
KPI, with one day horizon forecast
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Figure 4.5: Accuracy measured using sMAPE for the average UE’s connected
KPI, with one day horizon forecast

The obtained differences are not relevant for either of the accuracy measures,

this can be better observed on table 4.1 (below).

The models ES-NTASND, ES-NTMSND and Theta have the overall best

MASE and sMAPE, however the differences are not sufficiently relevant when

comparing these models with ES-ATASND, ES-ATASD or ES-MTMSD.
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Model sMAPE MASE

SNAIVE 9.2 2.5

ES-ATASND 6.3 1.6

ES-ATMSND 6.7 1.7

ES-NTASND 6.2 1.6

ES-NTMSND 6.2 1.6

ES-ATASD 6.3 1.6

ES-MTMSD 6.3 1.6

ARIMA 12.7 2.8

LINEAR TREND 12.4 2.7

SARIMAX 7.0 1.7

THETA 6.2 1.6

Gatech 11.7 2.4

KaterinaKou 11.5 2.4

Pmontman 11.6 2.4

Prologistica 11.4 2.4

Vangspiliot 11.6 2.4

Table 4.1: Seasonal results of sMAPE and MASE, with horizon equal to one
day

. The overall best results are emphasized.
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Five Days Horizon

Figure 4.6: Accuracy measured using MASE for the average UE’s connected
KPI, with five day horizon forecast

Figure 4.7: Accuracy measured using sMAPE for the average UE’s connected
KPI, with five day horizon forecast

As presented on table 4.2 there is not much difference between some of

the studied models. Both ES-NTASND and ES-NTMSND have the same
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results, therefore either could be chosen as best performing model for an

horizon of five days, in spite of the differences to ES-ATASND, ES-ATASD

or ES-MTMSD are so little, that can be disregarded.

Model sMAPE MASE

SNAIVE 9.2 2.5

ES-ATASND 6.3 1.6

ES-ATMSND 6.7 1.7

ES-NTASND 6.2 1.6

ES-NTMSND 6.2 1.6

ES-ATASD 6.3 1.6

ES-MTMSD 6.3 1.6

ARIMA 12.7 2.8

LINEAR TREND 12.4 2.7

SARIMAX 7 1.7

THETA 7.8 2

Gatech 11.6 2.4

KaterinaKou 11.5 2.4

Pmontman 11.2 2.4

Prologistica 11.4 2.4

Vangspiliot 11.5 2.4

Table 4.2: Seasonal results of sMAPE and MASE, with an horizon of five days
for the average UE’s connected KPI
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Ten Days Horizon

Figure 4.8: Accuracy measured using MASE for the average UE’s connected
KPI, with ten day horizon forecast

Figure 4.9: Accuracy measured using sMAPE for the average UE’s connected
KPI, with ten day horizon forecast
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As when analysing the five day horizon, both ES-NTASND and ES-NTMSND

have similar values, consequently either is the best model for this Key Per-

formance Indicators (KPI) with an horizon of ten days. However once again

there are other models with really close results, where the difference is not

clear, ES-ATASD and Theta can therefore be considered as good as the best.

Model sMAPE MASE

SNAIVE 9.7 2.7

ES-ATASND 8.7 2.5

ES-ATMSND 10.9 2.7

ES-NTASND 8.5 2.3

ES-NTMSND 8.5 2.3

ES-ATASD 8.6 2.4

ES-MTMSD 8.7 2.5

ARIMA 13.3 2.9

LINEAR TREND 13 2.9

SARIMAX 11.7 2.6

THETA 8.7 2.3

Gatech 11.7 2.5

KaterinaKou 11.5 2.4

Pmontman 11.1 2.3

Prologistica 11.6 2.4

Vangspiliot 11.6 2.4

Table 4.3: Seasonal results of sMAPE and MASE, with horizon ten days for
for the average UE’s connected Key Performance Indicators (KPI)
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Fourteen Days Horizon

Figure 4.10: Accuracy measured using MASE for the average UE’s connected
KPI, with fourteen day horizon forecast

Figure 4.11: Accuracy measured using sMAPE for the average UE’s connected
KPI, with fourteen day horizon forecast

On table 4.4 are represented the results for a fourteen-day horizon of the

KPI average UE’s connected. The model with the best performance for the
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horizon and KPI under study in this case is ES-NTASND, despite a really

small difference to ES-NTMSND, ES-ATASD and Theta.

Model sMAPE MASE

SNAIVE 10 2.7

ES-ATASND 9.2 2.7

ES-ATMSND 12.4 3.1

ES-NTASND 9 2.4

ES-NTMSND 9 2.5

ES-ATASD 9.1 2.5

ES-MTMSD 9.2 2.7

ARIMA 13.5 3

LINEAR TREND 13.2 2.9

SARIMAX 12.9 2.8

THETA 9.2 2.4

Gatech 11.7 2.5

KaterinaKou 11.5 2.5

Pmontman 11.2 2.3

Prologistica 11.7 2.5

Vangspiliot 11.6 2.5

Table 4.4: Seasonal results of sMAPE and MASE, with horizon fourteen days
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• Maximum number of active UE’s per cell

One Day Horizon

Figure 4.12: Results for MASE having one day horizon

Figure 4.13: Results for sMAPE having one day horizon

Table 4.5 presents the results of sMAPE and MASE with horizon equal to

one day.
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The model with the best results is ES-MTMSD with a minor difference for

Theta, ES-ATASD and ES-ATMSND - although all models from M4 have

better performance in MASE than the rest of the competition.

Model sMAPE MASE

SNAIVE 7.2 2.1

ES-ATASND 6.3 1.8

ES-ATMSND 6.5 1.8

ES-NTASND 6.7 1.8

ES-NTMSND 6.3 1.8

ES-ATASD 6.2 1.8

ES-MTMSD 6.1 1.8

ARIMA 8.6 2.2

LINEAR TREND 7.7 2.1

SARIMAX 8.3 2

THETA 6.2 1.8

Gatech 8.6 1.6

KaterinaKou 8.3 1.5

Pmontman 8.5 1.6

Prologistica 8.7 1.6

Vangspiliot 8.5 1.5

Table 4.5: Seasonal results of sMAPE and MASE, with horizon one day, for
KPI Maximum number of active UE’s per cell
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Five Days Horizon

Figure 4.14: Accuracy measured using MASE for the Maximum number of
active UE’s per cell KPI, with five day horizon forecast

Figure 4.15: Accuracy measured using sMAPE for the Maximum number of
active UE’s per cell KPI, with five day horizon forecast

As it can be observed (in the table 4.6), the values recorded using MASE

are indistinct between the models from M4, and almost indistinct between
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the remaining models, but there is a distinctive difference between these two

groups.

By considering the values of sMAPE, the best models would be either ES-

NTMSND or ES-MTMSD, on the other hand if the value considered would

only be MASE, the models from M4 would be selected. Considering both

measures, even considering MASE more relevant than sMAPE, the best

performing model are ES-ATASD, and ES-MTMSD since the difference in

sMAPE is greater than the one registered by MASE.

Model sMAPE MASE

SNAIVE 7.3 2.2

ES-ATASND 6.8 2

ES-ATMSND 7.6 2.2

ES-NTASND 7.2 2

ES-NTMSND 6.8 2

ES-ATASD 6.6 2

ES-MTMSD 6.6 2

ARIMA 8.7 2.3

LINEAR TREND 7.9 2.2

SARIMAX 10.9 2.4

THETA 6.7 2

Gatech 8.6 1.6

KaterinaKou 8.3 1.6

Pmontman 8.4 1.6

Prologistica 8.8 1.6

Vangspiliot 8.6 1.6

Table 4.6: Seasonal results of sMAPE and MASE, with horizon of five days,
for KPI Maximum number of active UE’s per cell
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Ten Days Horizon

Figure 4.16: Accuracy measured using MASE for the Maximum number of
active UE’s per cell KPI, with ten days horizon forecast

Figure 4.17: Accuracy measured using sMAPE for the Maximum number of
active UE’s per cell KPI, with an horizon of ten days

The table 4.7 shows the results of both sMAPE and MASE with horizon

equal to ten days.
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Similar to what happened in the previous analysis of the Maximum number

of active UE’s per cell KPI, M4 models outperform the remaining models.

The best models are ES-ATASD and ES-MTMSD, despite the small differ-

ence to other models.

Model sMAPE MASE

SNAIVE 7.6 2.3

ES-ATASND 7.2 2.2

ES-ATMSND 8.8 2.4

ES-NTASND 7.6 2.1

ES-NTMSND 7.2 2.1

ES-ATASD 7 2.1

ES-MTMSD 7 2.1

ARIMA 8.9 2.3

LINEAR TREND 8.1 2.2

SARIMAX 12.4 2.6

THETA 7 2

Gatech 8.6 1.6

KaterinaKou 8.3 1.6

Pmontman 8.4 1.6

Prologistica 8.9 1.6

Vangspiliot 8.6 1.6

Table 4.7: Seasonal results of sMAPE and MASE, with horizon ten days, for
KPI Maximum number of active UE’s per cell
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Fourteen Days Horizon

Figure 4.18: Accuracy measured using MASE for the Maximum number of
active UE’s per cell KPI, with fourteen days horizon forecast

Figure 4.19: Accuracy measured using sMAPE for the Maximum number of
active UE’s per cell KPI, with an horizon of fourteen days

If the result of the best model was to be decided only by MASE, the best

model would undoubtedly be one of the M4 models (KaterinaKou), although
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by observing the values obtained on sMAPE, non M4 models usually per-

formed better.

The decision once again relies on the interpretation of the complete set of

results, consequently the best performing model is KaterinaKou.

Model sMAPE MASE

SNAIVE 7.8 2.3

ES-ATASND 7.5 2.4

ES-ATMSND 9.8 2.7

ES-NTASND 7.8 2.1

ES-NTMSND 7.5 2.1

ES-ATASD 7.2 2.2

ES-MTMSD 7.3 2.2

ARIMA 9 2.3

LINEAR TREND 8.2 2.3

SARIMAX 13.8 2.8

THETA 7.2 2.1

Gatech 8.7 1.6

KaterinaKou 8.3 1.6

Pmontman 8.5 1.6

Prologistica 9 1.7

Vangspiliot 8.6 1.6

Table 4.8: Seasonal results of sMAPE and MASE, with horizon fourteen days,
for KPI Maximum number of active UE’s per cell
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• Maximum number of connected UE’s per cell

One Day Horizon

Figure 4.20: MASE results, obtained with one day horizon forecast

Figure 4.21: sMAPE results with one day horizon forecast

The selection of the best model in this case is not obvious, since the values of

MASE and sMAPE are not compliant. By considering only MASE, the best
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models would be either any of the M4 models, however if considering only

the sMAPE, the best models are ES-MTMSD. In this case the best model

could be either one of the six, since the decision will always depend on the

importance given to each of the used accuracy measures, even so the values

are not that apart. The case study as already stated before relies on giving

a bigger emphasis on MASE, but the difference between KaterinaKou and

ES-MTMSD is smaller in the MASE and grew a in sMAPE - the best model

is ES-MTMSD.

Model sMAPE MASE

SNAIVE 7.2 2.1

ES-ATASND 6.3 1.8

ES-ATMSND 6.5 1.8

ES-NTASND 6.7 1.7

ES-NTMSND 6.3 1.7

ES-ATASD 6.2 1.8

ES-MTMSD 6 1.8

ARIMA 8.6 2.2

LINEAR TREND 7.7 2.1

SARIMAX 8.3 2

THETA 6.2 1.7

Gatech 8.5 1.5

KaterinaKou 8.2 1.5

Pmontman 8.5 1.5

Prologistica 8.7 1.5

Vangspiliot 8.5 1.5

Table 4.9: Seasonal results of sMAPE and MASE, with horizon one day, for
KPI Maximum Number of Connected UE’s
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Five Days Horizon

Figure 4.22: Accuracy measured using MASE for the Maximum Number of
Connected UE’s KPI, with five days horizon forecast

Figure 4.23: Accuracy measured using sMAPE for the Maximum Number of
Connected UE’s KPI, with five days horizon forecast

Table 4.10 contains the results of sMAPE and MASE with horizon equal to

five days.
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This is another case where MASE and MAPE are not compliant, once again

the differences on sMAPE are not too great, in the possible best models.

The overall best model here is Theta because of the smaller value of sMAPE

and a small difference in MASE for the M4 models.

Model sMAPE MASE

SNAIVE 7.3 2.1

ES-ATASND 6.8 2

ES-ATMSND 7.6 2.2

ES-NTASND 7.2 2

ES-NTMSND 6.8 1.9

ES-ATASD 6.6 2

ES-MTMSD 6.6 2

ARIMA 8.7 2.2

LINEAR TREND 7.9 2.1

SARIMAX 11 2.4

THETA 6.6 1.9

Gatech 8.5 1.5

KaterinaKou 8.2 1.5

Pmontman 8.4 1.5

Prologistica 8.8 1.6

Vangspiliot 8.5 1.5

Table 4.10: Seasonal results of sMAPE and MASE, with an horizon of five
days, for KPI Maximum Number of Connected UE’s
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Ten Days Horizon

Figure 4.24: Accuracy measured using MASE for the Maximum Number of
Connected UE’s KPI, with ten days horizon forecast

Figure 4.25: Accuracy measured using sMAPE for the Maximum Number of
Connected UE’s KPI, with ten days horizon forecast

The results in the perspective of sMAPE reveal the best model as being ES-

ATASD, ES-MTMSD and Theta, though MASE is once again better on the
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M4 models. The issue recorded in this case is the same previously analysed

situation. The overall best method is chosen considering a combination

of both values (with bigger emphasis on the MASE), hence here the best

performing model is Theta.

Model sMAPE MASE

SNAIVE 7.6 2.2

ES-ATASND 7.2 2.2

ES-ATMSND 8.8 2.4

ES-NTASND 7.6 2

ES-NTMSND 7.2 2

ES-ATASD 7 2

ES-MTMSD 7 2.1

ARIMA 8.9 2.3

LINEAR TREND 8.1 2.2

SARIMAX 12.7 2.6

THETA 7 2

Gatech 8.6 1.5

KaterinaKou 8.3 1.5

Pmontman 8.4 1.5

Prologistica 8.9 1.6

Vangspiliot 8.5 1.5

Table 4.11: Seasonal results of sMAPE and MASE, with a ten days horizon,
for KPI Maximum Number of Connected UE’s
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Fourteen Days Horizon

Figure 4.26: Accuracy measured using MASE for the Maximum Number of
Connected UE’s KPI, with fourteen days horizon forecast

Figure 4.27: Accuracy measured using sMAPE for the Maximum Number of
Connected UE’s KPI, with fourteen days horizon forecast

Table 4.12 contains the results of MASE and sMAPE for a fourteen horizon

of forecasting.
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The previously analysed situation is repeated for the present horizon of four-

teen days.

By the same principle that was applied before, the best model is Theta.

Model sMAPE MASE

SNAIVE 7.8 2.3

ES-ATASND 7.5 2.3

ES-ATMSND 9.7 2.6

ES-NTASND 7.8 2.1

ES-NTMSND 7.5 2.1

ES-ATASD 7.2 2.1

ES-MTMSD 7.3 2.2

ARIMA 9 2.3

LINEAR TREND 8.2 2.2

SARIMAX 14.2 2.8

THETA 7.2 2.1

Gatech 8.6 1.5

KaterinaKou 8.3 1.5

Pmontman 8.4 1.5

Prologistica 9 1.6

Vangspiliot 8.6 1.5

Table 4.12: Seasonal results of sMAPE and MASE, with horizon fourteen day,
for KPI Maximum Number of Connected UE’s
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4.3.2.2 Non-Seasonal

• Requests to network access made by UE’s during RACH

One Day Horizon

Figure 4.28: Accuracy measured using MASE network access request by UE’s

Figure 4.29: Accuracy measured using sMAPE network access request to by
UE’s
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The results for the present Key Performance Indicators despite not having

a great difference between all the used models, show that SES, ES-MTNSD

and ES-ATNSD have better performance than the remaining models.

Model sMAPE MASE

NAIVE 4.1 2.9

DRIFT 4.3 3

SES 3.7 2.7

ES - WA 4.3 2.9

ES-MTNSD 3.7 2.7

ES-ATNSD 3.7 2.7

ES-ATNSND 3.9 2.8

Gatech 5.4 3.2

KaterinaKou 5.4 3.2

Pmontman 5.5 3

Prologistica 5.6 3.3

Vangspiliot 5.3 3.1

Table 4.13: Seasonal results of sMAPE and MASE, with an horizon of one
day, for KPI network access request to by UE’s
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Five Days Horizon

Figure 4.30: Accuracy measured using MASE network access request by UE’s

Figure 4.31: Accuracy measured using sMAPE network access request to by
UE’s

For an horizon of five days the results show once again little to no difference

between them - though here SES has a better performance than the rest.
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Model sMAPE MASE

NAIVE 4.7 3.2

DRIFT 4.9 3.2

SES 4 2.8

ES - WA 5.5 3.1

ES-MTNSD 4.1 3.3

ES-ATNSD 4 3.2

ES-ATNSND 4.6 3.1

Gatech 5.4 3.1

KaterinaKou 5.4 3.1

Pmontman 5.5 3.1

Prologistica 5.6 3.3

Vangspiliot 5.3 3.1

Table 4.14: Seasonal results of sMAPE and MASE, with an horizon equal to
five days, for KPI network access request to by UE’s
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Ten Days Horizon

Figure 4.32: Accuracy measured using MASE network access request by UE’s

Figure 4.33: Accuracy measured using sMAPE network access request to by
UE’s

The obtained results for an horizon of ten days are apparently to similar

to the previous results, SES continues to have an overall best performance

compared to the remaining models, despite the blunt differences recorded.
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Model sMAPE MASE

NAIVE 4.9 3.2

DRIFT 5.1 3.3

SES 4.2 2.8

ES - WA 5.9 3.2

ES-MTNSD 4.3 6

ES-ATNSD 4.2 3.3

ES-ATNSND 5.1 3.3

Gatech 5.4 3.2

KaterinaKou 5.4 3.2

Pmontman 5.5 3.2

Prologistica 5.6 3.4

Vangspiliot 5.3 3.2

Table 4.15: Seasonal results of sMAPE and MASE, with a ten day horizon,
for KPI network access request to by UE’s
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Fourteen Days Horizon

Figure 4.34: Accuracy measured using MASE network access request by UE’s

Figure 4.35: Accuracy measured using sMAPE network access request to by
UE’s

Observing the overall results of the present Key Performance Indicators

(KPI), the results are similar independent of the analyzed horizon, the dif-

ferences between a large majority of the used models can be characterized as
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blunt and is almost irrelevant. And like what happened in the previous hori-

zons here the best performance model is also Simple Exponential Smoothing

(SES).

Model sMAPE MASE

NAIVE 5 3.2

DRIFT 5.2 3.3

SES 4.3 2.8

ES - WA 6.1 3.3

ES-MTNSD 4.4 7.3

ES-ATNSD 4.3 3.3

ES-ATNSND 5.6 3.5

Gatech 5.4 3.2

KaterinaKou 5.4 3.2

Pmontman 5.6 3.2

Prologistica 5.7 3.4

Vangspiliot 5.3 3.2

Table 4.16: Seasonal results of sMAPE and MASE, with a fourteen day hori-
zon, for KPI network access request to by UE’s
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• Allocation of the transport channel for downlink

One Day Horizon

Figure 4.36: Accuracy measured using MASE with a one day horizon forecast

Figure 4.37: Accuracy measured using sMAPE with one day horizon forecast

Table 4.21 contains the values previously represented in the graphics (above),

for sMAPE and MASE.
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By evaluating the values it is observed a notorious similarity in the results,

and not much of a difference in the complete set of models. SES and ES-

MTNSD are equal, and they are the best performing models for a horizon

of one day.

Model sMAPE MASE

NAIVE 3 2.4

DRIFT 3.2 2.5

SES 2.7 2.3

ES - WA 3.3 2.7

ES-MTNSD 2.7 2.3

ES-ATNSD 2.8 2.3

ES-ATNSND 2.8 2.3

Gatech 3.8 2.4

KaterinaKou 3.8 2.4

Pmontman 4 2.6

Prologistica 3.9 2.6

Vangspiliot 3.7 2.4

Table 4.17: Seasonal results of sMAPE and MASE, with horizon equal to one
day, for the KPI allocation of the transport channel for user data downlinks
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Five Days Horizon

Figure 4.38: Accuracy measured using MASE for the Allocation of the trans-
port channel for user data downlink KPI, with a five day horizon forecast

Figure 4.39: Accuracy measured using sMAPE for the Allocation of the trans-
port channel for user data downlink KPI, with a five day horizon forecast

The values present on the table 4.22, do not have considerable differences

between them, this is similar to the previous analyzed horizon. SES continues

87



Chapter 4 Experimental Study Forecasting the capacity of LTE mobile Networks

to have a better performance, even though the difference is irrelevant when

the results are compared to ES-ATNSD.

Model sMAPE MASE

NAIVE 3.4 2.9

DRIFT 3.6 2.9

SES 3 2.6

ES - WA 4.1 3.4

ES-MTNSD 3 2.7

ES-ATNSD 3 2.7

ES-ATNSND 3.4 2.8

Gatech 3.7 2.4

KaterinaKou 3.8 2.4

Pmontman 3.9 2.5

Prologistica 3.9 2.6

Vangspiliot 3.7 2.4

Table 4.18: Seasonal results of sMAPE and MASE, with an horizon equal to
five days, for the KPI allocation of the transport channel for user data downlink
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Ten Days Horizon

Figure 4.40: Accuracy measured using MASE for the Allocation of the trans-
port channel for user data downlink KPI, with ten day horizon forecast

Figure 4.41: Accuracy measured using sMAPE for the Allocation of the trans-
port channel for user data downlink KPI, with ten day horizon forecast

The values of MASE on the M4 models are consistently better than in all

other models, although there is not much a difference in the overall standings,
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realistically the models seem to have really similar behaviours. Still in this

case both KaterinaKou and Vangspiliot have a small advantage from the

rest.

Model sMAPE MASE

NAIVE 3.6 3

DRIFT 3.7 3.1

SES 3.2 2.8

ES - WA 4.4 3.6

ES-MTNSD 3.2 2.9

ES-ATNSD 3.2 2.9

ES-ATNSND 3.9 3.2

Gatech 3.8 2.4

KaterinaKou 3.8 2.4

Pmontman 3.9 2.5

Prologistica 3.9 2.6

Vangspiliot 3.7 2.4

Table 4.19: Seasonal results of sMAPE and MASE, with horizon ten day, for
KPI Maximum Number of Connected UE’s
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Fourteen Days Horizon

Figure 4.42: Accuracy measured using MASE for the Allocation of the trans-
port channel for user data downlink KPI, with fourteen day horizon forecast

Figure 4.43: Accuracy measured using sMAPE for the Allocation of the trans-
port channel for user data downlink KPI, with fourteen day horizon forecast

Table 4.24 the results of both sMAPE and MASE for a fourteen day horizon

are available.
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Like in the previous cases for this KPI there is not a great difference in the

values. In such cases it is difficult to say which is the best performing model.

Once again the MASE on the M4 models is lower than the calculated for the

rest of the models. The best performing M4 model is Vangspiliot, but not

by a margin that would declare it as the best.

Model sMAPE MASE

NAIVE 3.7 3

DRIFT 3.9 3.1

SES 3.3 2.7

ES - WA 4.5 3.6

ES-MTNSD 3.3 3

ES-ATNSD 3.3 3

ES-ATNSND 4.3 3.4

Gatech 3.8 2.4

KaterinaKou 3.8 2.4

Pmontman 3.9 2.5

Prologistica 4 2.6

Vangspiliot 3.7 2.4

Table 4.20: Seasonal results of sMAPE and MASE, with horizon fourteen day,
for the KPI - allocation of the transport channel for user data downlink
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• Allocation of the transport channel for uplink

One Day Horizon

Figure 4.44: Accuracy measured using MASE with a one day horizon forecast

Figure 4.45: Accuracy measured using sMAPE with one day horizon forecast

Table 4.21 contains the values previously represented in the graphics (above),

for sMAPE and MASE.
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By evaluating the values it is observed a notorious similarity in the results,

and not much of a difference in the complete set of models. SES and ES-

MTNSD are equal, and they are the best performing models for a horizon

of one day.

Model sMAPE MASE

NAIVE 3 2.4

DRIFT 3.2 2.5

SES 2.7 2.3

ES - WA 3.3 2.7

ES-MTNSD 2.7 2.3

ES-ATNSD 2.8 2.3

ES-ATNSND 2.8 2.3

Gatech 3.8 2.4

KaterinaKou 3.8 2.4

Pmontman 4 2.6

Prologistica 3.9 2.6

Vangspiliot 3.7 2.4

Table 4.21: Seasonal results of sMAPE and MASE, with horizon equal to one
day, for the KPI allocation of the transport channel for user data downlinks
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Five Days Horizon

Figure 4.46: Accuracy measured using MASE for the Allocation of the trans-
port channel for user data downlink KPI, with a five day horizon forecast

Figure 4.47: Accuracy measured using sMAPE for the Allocation of the trans-
port channel for user data downlink KPI, with a five day horizon forecast

The values present on the table 4.22, do not have considerable differences

between them, this is similar to the previous analyzed horizon. SES continues
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to have a better performance, even though the difference is irrelevant when

the results are compared to ES-ATNSD.

Model sMAPE MASE

NAIVE 3.4 2.9

DRIFT 3.6 2.9

SES 3 2.6

ES - WA 4.1 3.4

ES-MTNSD 3 2.7

ES-ATNSD 3 2.7

ES-ATNSND 3.4 2.8

Gatech 3.7 2.4

KaterinaKou 3.8 2.4

Pmontman 3.9 2.5

Prologistica 3.9 2.6

Vangspiliot 3.7 2.4

Table 4.22: Seasonal results of sMAPE and MASE, with an horizon equal to
five days, for the KPI allocation of the transport channel for user data downlink
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Ten Days Horizon

Figure 4.48: Accuracy measured using MASE for the Allocation of the trans-
port channel for user data downlink KPI, with ten day horizon forecast

Figure 4.49: Accuracy measured using sMAPE for the Allocation of the trans-
port channel for user data downlink KPI, with ten day horizon forecast

The values of MASE on the M4 models are consistently better than in all

other models, although there is not much a difference in the overall standings,
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realistically the models seem to have really similar behaviours. Still in this

case both KaterinaKou and Vangspiliot have a small advantage from the

rest.

Model sMAPE MASE

NAIVE 3.6 3

DRIFT 3.7 3.1

SES 3.2 2.8

ES - WA 4.4 3.6

ES-MTNSD 3.2 2.9

ES-ATNSD 3.2 2.9

ES-ATNSND 3.9 3.2

Gatech 3.8 2.4

KaterinaKou 3.8 2.4

Pmontman 3.9 2.5

Prologistica 3.9 2.6

Vangspiliot 3.7 2.4

Table 4.23: Seasonal results of sMAPE and MASE, with horizon ten day, for
KPI Maximum Number of Connected UE’s
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Fourteen Days Horizon

Figure 4.50: Accuracy measured using MASE for the Allocation of the trans-
port channel for user data downlink KPI, with fourteen day horizon forecast

Figure 4.51: Accuracy measured using sMAPE for the Allocation of the trans-
port channel for user data downlink KPI, with fourteen day horizon forecast

Table 4.24 the results of both sMAPE and MASE for a fourteen day horizon

are available.
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Like in the previous cases for this KPI there is not a great difference in the

values. In such cases it is difficult to say which is the best performing model.

Once again the MASE on the M4 models is lower than the calculated for the

rest of the models. The best performing M4 model is Vangspiliot, but not

by a margin that would declare it as the best.

Model sMAPE MASE

NAIVE 3.7 3

DRIFT 3.9 3.1

SES 3.3 2.7

ES - WA 4.5 3.6

ES-MTNSD 3.3 3

ES-ATNSD 3.3 3

ES-ATNSND 4.3 3.4

Gatech 3.8 2.4

KaterinaKou 3.8 2.4

Pmontman 3.9 2.5

Prologistica 4 2.6

Vangspiliot 3.7 2.4

Table 4.24: Seasonal results of sMAPE and MASE, with horizon fourteen day,
for the KPI - allocation of the transport channel for user data downlink
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4.3.3 Results and Analysis Summary

Table 4.25 summarizes the previous presented results in terms of best choice

according with the analyzed Key Performance Indicators (KPI) and the intended

horizon.

As it is noticeable the horizons within the same KPI affect model performances.

For seasonal KPIs (the top three on the table), the models ES-NTASND and

ES-NTMSND outperformed other models in most cases, and something similar

happened in the case of non seasonal KPIs (the bottom three on the table), the

models SES, KaterinaKou and Vangspiliot cover most of these cases.

Horizon (days)
KPI 1 5 10 14

Average of UE’s connected
ES-NTASND
ES-NTMSND
Theta

ES-NTASND
ES-NTMSND

ES-NTASND
ES-NTMSND ES-NTASND

Maximum number of active UE’s per cell ES-MTMSD ES-ATASD
ES-MTMSD

ES-ATASD
ES-MTMSD KaterinaKou

Maximum number of connected UE’s per cell ES-MTMSD Theta Theta Theta

Requests to network access made by UE’s during RACH ES-MTMSD
ES-ATNSD SES SES SES

Allocation of the transport channel for downlink SES
ES-MTNSD SES KaterinaKou

Vangspiliot Vangspiliot

Allocation of the transport channel for uplink SES
ES-MTNSD SES KaterinaKou

Vangspiliot Vangspiliot

Table 4.25: Summary of model choice by KPI and horizon
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Chapter 5

Conclusion

The continuously ever growing of mobile networks generated new problems,

specially considering network management decisions, where forecasts became not

only a useful tool, but rather a mandatory one. The purpose of the present work

has been to discover a model or multiple models that can better perform the task

of forecasting to a given data set.

Even though forecasts and their precision rely on many different factors that

include the nature of the data, the prediction horizon and of course the used model,

the results obtained in the present study are nonetheless somehow surprising,

specially when comparing them to the M4 competition.

In the present study, the best performing models from M4 (KaterinaKou and

Vangspiliot) did not have the best standings in that competition, of course that

are factors for that fact - the most plausible is the size of the used data set, but

not limited to it - however the results were unexpected.

The use of several different horizons was helpful to determining the best models

for a KPI, despite in general the difference between the majority of the used models

was not really substantial to determine the best model for a given KPI and horizon.
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On the seasonal data, although the analysis is made KPI by KPI, both Theta,

ES-NTASND and ES-MTMSD did perform well in comparison with the compe-

tition. The ES-NTASND is better suited on the average User Equipment’s con-

nected, Theta achieved better results the Maximum Number of Connected User

Equipment’s and ES-MTMSD has better performance on Maximum number of

active User Equipment’s per cell Key Performance Indicators.

Regarding non seasonal data the results revealed SES as the overall best model

for the request to network access by UE’s and the allocation of the transport

channel for downlink KPIs. Whilst for the allocation of the transport channel for

uplink KPI on shorter horizons SES continued to have the best results, for longer

horizons the models KaterinaKou and Vangspiliot did perform better.

However it is worth to mention that the KPI that addresses the request to

network access by UE’s, has the worst results of all analysed data sets - this is

explained by the volatile behaviour recorded for such Key Performance Indicators

- which also increases the difficult of its analysis.

Overall the results do not contain clear advantages for either model, the results

are similar across the whole data set - some models already identified did have

better performances, yet not with clear distinctions.

5.1 Future Work

The most important future activity is to validate the veracity of the obtained

results. That can be achieved by applying the Diebold Mariano Test (addressed

in this study on 2.3.2).

The used data in this study is from a northern European country, consequently

characterized by the habits, culture and way of living there, if the data was from

other regions it would be characterized differently hence it would be interesting to

test these results, with other sets from the same KPIs.
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As future work it is also important to use a bigger data set, not by adding more

cells, or KPIs, but by increasing the historic data, instead of using a whole year, it

would definitely improve the results if the historical data was composed of several

years.
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