Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/20429
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJacob Rodrigues, M.-
dc.contributor.authorPostolache, O.-
dc.contributor.authorCercas, F.-
dc.date.accessioned2020-04-27T14:33:10Z-
dc.date.available2020-04-27T14:33:10Z-
dc.date.issued2020-
dc.identifier.issn1424-8220-
dc.identifier.urihttp://hdl.handle.net/10071/20429-
dc.description.abstractHealthcare optimization has become increasingly important in the current era, where numerous challenges are posed by population ageing phenomena and the demand for higher quality of the healthcare services. The implementation of Internet of Things (IoT) in the healthcare ecosystem has been one of the best solutions to address these challenges and therefore to prevent and diagnose possible health impairments in people. The remote monitoring of environmental parameters and how they can cause or mediate any disease, and the monitoring of human daily activities and physiological parameters are among the vast applications of IoT in healthcare, which has brought extensive attention of academia and industry. Assisted and smart tailored environments are possible with the implementation of such technologies that bring personal healthcare to any individual, while living in their preferred environments. In this paper we address several requirements for the development of such environments, namely the deployment of physiological signs monitoring systems, daily activity recognition techniques, as well as indoor air quality monitoring solutions. The machine learning methods that are most used in the literature for activity recognition and body motion analysis are also referred. Furthermore, the importance of physical and cognitive training of the elderly population through the implementation of exergames and immersive environments is also addressedeng
dc.language.isoeng-
dc.publisherMultidisciplinary Digital Publishing Institute-
dc.rightsopenAccess-
dc.subjectHealthcareeng
dc.subjectInternet of thingseng
dc.subjectSmart environmentseng
dc.subjectPhysiological signs monitoringeng
dc.subjectActivity recognitioneng
dc.subjectIndoor air qualityeng
dc.titlePhysiological and behavior monitoring systems for smart healthcare environments: a revieweng
dc.typearticle-
dc.peerreviewedyes-
dc.journalSensors-
dc.volume20-
dc.number8-
degois.publication.issue8-
degois.publication.titlePhysiological and behavior monitoring systems for smart healthcare environments: a revieweng
dc.date.updated2020-04-27T15:32:09Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.3390/s20082186-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologiaspor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Médicapor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia do Ambientepor
dc.subject.fosDomínio/Área Científica::Ciências Médicas::Medicina Clínicapor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-71206-
iscte.alternateIdentifiers.scopus2-s2.0-85083418302-
Appears in Collections:IT-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
sensors-20-02186.pdfVersão Editora538,13 kBAdobe PDFView/Open
sensors-20-02186.pdfVersão Editora538,13 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.