Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/20151
Autoria: Ribeiro, E.
Ribeiro, R.
Matos, D. M. de.
Data: 2019
Título próprio: Deep dialog act recognition using multiple token, segment, and context information representations
Título da revista: Journal of Artificial Intelligence Research
Volume: 66
Paginação: 861 - 899
Referência bibliográfica: Ribeiro, E., Ribeiro, R., & Matos, D. M. de. (2019). Deep dialog act recognition using multiple token, segment, and context information representations. Journal of Artificial Intelligence Research, 66, 861-899. https://doi.org/10.1613/jair.1.11594
ISSN: 1076-9757
DOI (Digital Object Identifier): 10.1613/jair.1.11594
Palavras-chave: Dialog processing
Natural language
Neural networks
Resumo: Automatic dialog act recognition is a task that has been widely explored over the years. In recent works, most approaches to the task explored different deep neural network architectures to combine the representations of the words in a segment and generate a segment representation that provides cues for intention. In this study, we explore means to generate more informative segment representations, not only by exploring different network architectures, but also by considering different token representations, not only at the word level, but also at the character and functional levels. At the word level, in addition to the commonly used uncontextualized embeddings, we explore the use of contextualized representations, which are able to provide information concerning word sense and segment structure. Character-level tokenization is important to capture intention-related morphological aspects that cannot be captured at the word level. Finally, the functional level provides an abstraction from words, which shifts the focus to the structure of the segment. Additionally, we explore approaches to enrich the segment representation with context information from the history of the dialog, both in terms of the classifications of the surrounding segments and the turn-taking history. This kind of information has already been proved important for the disambiguation of dialog acts in previous studies. Nevertheless, we are able to capture additional information by considering a summary of the dialog history and a wider turn-taking context. By combining the best approaches at each step, we achieve performance results that surpass the previous state-of-the-art on generic dialog act recognition on both the Switchboard Dialog Act Corpus (SwDA) and the ICSI Meeting Recorder Dialog Act Corpus (MRDA), which are two of the most widely explored corpora for the task. Furthermore, by considering both past and future context, similarly to what happens in an annotation scenario, our approach achieves a performance similar to that of a human annotator on SwDA and surpasses it on MRDA.
Arbitragem científica: yes
Acesso: Acesso Aberto
Aparece nas coleções:IT-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
article_64052.pdfVersão Editora547,83 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.