Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/17143
Registo completo
Campo DCValorIdioma
dc.contributor.advisorNunes, Luís Miguel-
dc.contributor.advisorOliveira, Sancho Moura-
dc.contributor.authorRomano, Pedro Sousa-
dc.date.accessioned2019-02-05T16:11:52Z-
dc.date.available2019-02-05T16:11:52Z-
dc.date.issued2018-05-24-
dc.date.submitted2018-01-
dc.identifier.citationRomano, P. S. (2018). A cooperative active perception approach for swarm robotics [Dissertação de mestrado, Iscte - Instituto Universitário de Lisboa]. Repositório do Iscte. http://hdl.handle.net/10071/17143pt-PT
dc.identifier.urihttp://hdl.handle.net/10071/17143-
dc.description.abstractMore than half a century after modern robotics first emerged, we still face a landscape in which most of the work done by robots is predetermined, rather than autonomous. A strong understanding of the environment is one of the key factors for autonomy, enabling the robots to make correct decisions based on the environment surrounding them. Classic methods for obtaining robotic controllers are based on manual specification, but become less trivial as the complexity scales. Artificial intelligence methods like evolutionary algorithms were introduced to synthesize robotic controllers by optimizing an artificial neural network to a given fitness function that measures the robots’ performance to solve a predetermined task. In this work, a novel approach to swarm robotics environment perception is studied, with a behavior model based on the cooperative identification of objects that fly around an environment, followed by an action based on the result of the identification process. Controllers are obtained via evolutionary methods. Results show a controller with a high identification and correct decision rates. The work is followed by a study on scaling up that approach to multiple environments. Experiments are done on terrain, marine and aerial environments, as well as on ideal, noisy and hybrid scenarios. In the hybrid scenario, different evolution samples are done in different environments. Results show the way these controllers are able to adapt to each scenario and conclude a hybrid evolution is the best fit to generate a more robust and environment independent controller to solve our task.por
dc.description.abstractMais de um século após a robótica moderna ter surgido, ainda nos deparamos com um cenário onde a maioria do trabalho executado por robôs é pré-determinado, ao invés de autónomo. Uma forte compreensão do ambiente é um dos pontos chave para a autonomia, permitindo aos robôs tomarem decisões corretas baseadas no ambiente que os rodeia. Abordagens mais clássicas para obter controladores de robótica são baseadas na especificação manual, mas tornam-se menos apropriadas à medida que a complexidade aumenta. Métodos de inteligência artificial como algoritmos evolucionários foram introduzidos para obter controladores de robótica através da otimização de uma rede neuronal artificial para uma função de fitness que mede a aptidão dos robôs para resolver uma determinada tarefa. Neste trabalho, é apresentada uma nova abordagem para perceção do ambiente por um enxame de robôs, com um modelo de comportamento baseado na identificação cooperativa de objetos que circulam no ambiente, seguida de uma atuação baseada no resultado da identificação. Os controladores são obtidos através de métodos evolucionários. Os resultados apesentam um controlador com uma alta taxa de identificação e de decisão. Segue-se um estudo sobre o escalonamento da abordagem a múltiplos ambientes. São feitas experiencias num ambiente terrestre, marinho e aéreo, bem como num contexto ideal, ruidoso e híbrido. No contexto híbrido, diferentes samples da evolução ocorrem em diferentes ambientes. Os resultados demonstram a forma como cada controlador se adapta aos restantes ambientes e concluem que a evolução híbrida foi a mais capaz de gerar um controlador robusto e transversal aos diferentes ambientes. Palavras-chave: Robótica evolucionária, Sistemas multi-robô, Cooperação, Perceção, Identificação de objetos, Inteligência artificial, Aprendizagem automática, Redes neuronais, Múltiplos ambientes.por
dc.language.isoengpor
dc.rightsopenAccesspor
dc.subjectEvolutionary roboticspor
dc.subjectMultirobot systemspor
dc.subjectCooperationpor
dc.subjectPerceptionpor
dc.subjectObject identificationpor
dc.subjectArtifical intelligencepor
dc.subjectMachine learningpor
dc.subjectNeural networkspor
dc.subjectMultiple environmentspor
dc.subjectEngenharia de telecomunicaçõespor
dc.subjectRobóticapor
dc.subjectCooperaçãopor
dc.subjectInteligência artificialpor
dc.subjectRedes neuronaispor
dc.titleA cooperative active perception approach for swarm roboticspor
dc.typemasterThesispor
dc.peerreviewedyespor
dc.identifier.tid201971704por
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
thesis.degree.nameMestrado em Engenharia de Telecomunicações e Informáticapor
Aparece nas coleções:T&D-DM - Dissertações de mestrado

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
master_pedro_sousa_romano.pdf5,33 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.