
Department of Information Science and Technology

A Cooperative Active Perception
approach for Swarm Robotics

Pedro Sousa Romano

A Dissertation presented in partial fulfillment of the Requirements
for the Degree of

Master in Telecommunications and Computer Engineering

Supervisor

Prof. Dr. Luís Miguel Nunes, Assistant Professor
ISCTE-IUL

Co-Supervisor

Prof. Dr. Sancho Moura Oliveira, Assistant Professor
ISCTE-IUL

January 2018

"To a robot, the world is a sea of ambiguity, in which it will sink or swim
depending on the robustness of its perceptual abilities."

Paul Fitzpatrick

Resumo

Mais de um século após a robótica moderna ter surgido, ainda nos deparamos
com um cenário onde a maioria do trabalho executado por robôs é pré-determinado,
ao invés de autónomo. Uma forte compreensão do ambiente é um dos pontos chave
para a autonomia, permitindo aos robôs tomarem decisões corretas baseadas no
ambiente que os rodeia.

Abordagens mais clássicas para obter controladores de robótica são baseadas na
especificação manual, mas tornam-se menos apropriadas à medida que a complex-
idade aumenta. Métodos de inteligência artificial como algoritmos evolucionários
foram introduzidos para obter controladores de robótica através da otimização de
uma rede neuronal artificial para uma função de fitness que mede a aptidão dos
robôs para resolver uma determinada tarefa.

Neste trabalho, é apresentada uma nova abordagem para perceção do ambiente
por um enxame de robôs, com um modelo de comportamento baseado na identifi-
cação cooperativa de objetos que circulam no ambiente, seguida de uma atuação
baseada no resultado da identificação. Os controladores são obtidos através de
métodos evolucionários. Os resultados apesentam um controlador com uma alta
taxa de identificação e de decisão.

Segue-se um estudo sobre o escalonamento da abordagem a múltiplos am-
bientes. São feitas experiencias num ambiente terrestre, marinho e aéreo, bem
como num contexto ideal, ruidoso e híbrido. No contexto híbrido, diferentes sam-
ples da evolução ocorrem em diferentes ambientes. Os resultados demonstram a
forma como cada controlador se adapta aos restantes ambientes e concluem que a
evolução híbrida foi a mais capaz de gerar um controlador robusto e transversal
aos diferentes ambientes.

Palavras-chave: Robótica evolucionária, Sistemas multi-robô, Cooperação,
Perceção, Identificação de objetos, Inteligência artificial, Aprendizagem automática,
Redes neuronais, Múltiplos ambientes.

v

Abstract

More than half a century after modern robotics first emerged, we still face
a landscape in which most of the work done by robots is predetermined, rather
than autonomous. A strong understanding of the environment is one of the key
factors for autonomy, enabling the robots to make correct decisions based on the
environment surrounding them.

Classic methods for obtaining robotic controllers are based on manual spec-
ification, but become less trivial as the complexity scales. Artificial intelligence
methods like evolutionary algorithms were introduced to synthesize robotic con-
trollers by optimizing an artificial neural network to a given fitness function that
measures the robots’ performance to solve a predetermined task.

In this work, a novel approach to swarm robotics environment perception is
studied, with a behavior model based on the cooperative identification of objects
that fly around an environment, followed by an action based on the result of the
identification process. Controllers are obtained via evolutionary methods. Results
show a controller with a high identification and correct decision rates.

The work is followed by a study on scaling up that approach to multiple en-
vironments. Experiments are done on terrain, marine and aerial environments,
as well as on ideal, noisy and hybrid scenarios. In the hybrid scenario, different
evolution samples are done in different environments. Results show the way these
controllers are able to adapt to each scenario and conclude a hybrid evolution is
the best fit to generate a more robust and environment independent controller to
solve our task.

Keywords: Evolutionary Robotics, Multirobot systems, Cooperation, Per-
ception, Object identification, Artifical intelligence, Machine Learning, Neural
networks, Multiple environments.

vii

Acknowledgements

I would like to thank my supervisor Professor Luís Nunes and co-supervisor
Professor Sancho Oliveira for their dedication and knowledge, not only throughout
this thesis but also with previous investigations and projects along my academic
journey.

I would also like to thank all my friends and colleagues for their friendship,
motivation and constant support. I will be forever grateful for how much I have
grown personally and intellectually alongside them these last few years.

A special thanks also goes to my University, ISCTE-IUL, and all the teachers
and services that were always available and supportive.

Finally, I thank my family and specially my parents Filomena and Jorge for
their support, love, and for allowing me to have the privilege of completing this
higher education degree.

ix

Contents

Resumo v

Abstract vii

Acknowledgements ix

List of Figures xiii

List of Algorithms xv

Abbreviations xviii

1 Introduction 1
1.1 Objectives . 4
1.2 Research Challenges and Contribution 4

1.2.1 Other Scientific Contribution 5
1.3 Research Method . 5
1.4 Structure of the Dissertation . 5

2 State of the Art 7
2.1 Evolutionary Robotics . 8

2.1.1 Evolutionary Computation 8
2.1.2 Artificial Neural Networks (ANN) 8
2.1.3 Applications in Robotics . 9

2.2 Cooperative Active Perception . 11

3 Cooperative Active Perception Control System 17
3.1 Methodology . 18
3.2 Experimental Setup . 20

3.2.1 Evolutionary Process . 22
3.3 Experiments and Results . 23

3.3.1 Object Identification . 23
3.3.2 Object Identification and Catching 24

3.4 Final Controller . 26
3.4.1 Controller Architecture . 26
3.4.2 Results and Discussion . 28

xi

Contents

3.5 Generalizing the Approach . 29

4 Applying and Adapting the Controller to Multiple Environments 31
4.1 Modeling the Environments . 32

4.1.1 Terrain Environment . 32
4.1.2 Marine Environment . 33
4.1.3 Aerial Environment . 35

4.2 Evolving and testing the solution on different setups 37
4.2.1 Environment-specific Evolution and Results 38

4.2.1.1 Terrain Evolution 38
4.2.1.2 Marine Evolution 39
4.2.1.3 Aerial Evolution 40

4.2.2 Ideal Evolution applied to Multiple Environments 42
4.2.3 Noisy Evolution and Results 42
4.2.4 Hybrid Evolution and Results 44

4.3 Discussion and Comparison . 46

5 Conclusions 51

xii

List of Figures

3.1 Continuous Time Recurrent Neural Network (CTRNN) representation 18
3.2 Schematics of the simulation environment 21
3.3 Robot sensors representation . 27

4.1 Terrain environment model schematics 33
4.2 Marine environment model schematics 34
4.3 Aerial environment model schematics 36
4.4 Terrain environment evolution: tested in multiple environments . . 39
4.5 Marine environment evolution: tested in multiple environments . . . 40
4.6 Aerial environment evolution: tested in multiple environments . . . 41
4.7 Ideal environment evolution: tested in multiple environments 42
4.8 Noisy environment evolution: tested in multiple environments . . . 44
4.9 Hybrid environment evolution: tested in multiple environments . . . 45
4.10 Final comparison: all controllers tested in all scenarios 46

xiii

List of Tables

3.1 Controller Architecture: Robot Sensors and Actuators and corre-
sponding ANN Inputs and Ouputs 28

4.1 Terrain environment evolution: tested in multiple environments . . 38

4.2 Marine environment evolution: tested in multiple environments . . . 40

4.3 Aerial environment evolution: tested in multiple environments . . . 41

4.4 Ideal environment evolution: tested in multiple environments 42

4.5 Noisy environment evolution: tested in multiple environments . . . 43

4.6 Hybrid environment evolution: tested in multiple environments . . . 45

4.7 Environment specific controllers compared to the hybrid evolved
controller in each scenario . 49

xv

List of Algorithms

1 Marine environment robot inertia algorithm 35

xvii

Abbreviations

AI Artificial Intelligence (see page 2)

ANN Artificial Neural Network (see page 2)

CTRNN Continuous-Time Recurrent Neural Network (see page 9)

EA Evolutionary Algorithm (see page 2)

ER Evolutionary Robotics (see page 2)

UAV Unmanned Aerial Vehicle (see page 35)

xix

Chapter 1

Introduction

Ever since its first steps around the 1940’s, modern robotics have evolved and

we are now able to produce machines that can replace humans in many tasks.

Still, most of the work that robots are now broadly used for is predetermined, like

in factories and manufacturing, and do not involve great levels of autonomy, or

many degrees of freedom. The penetration of fully autonomous robots in society

is still scarce. One of the key factors that make up this challenge is environment

perception. In order to behave autonomously, the robot needs to make a wide

variety of decisions that have to be supported by a great understanding of the

environment surrounding it [1].

In nature, perception is often linked with psychological factors rather than just

physiologic [2]. Many times, the reaction to a stimulus depends on the context

the animal finds itself in. Also, learning and experience build a more solid under-

standing of the environment in the long term, changing the reaction to the same

stimulus over time. Although many of these approaches are unfeasible in computer

models, inspiration in nature while developing robotic approaches often leads to

natural and simple solutions.

"Machine Perception" is a term used to describe the capability of a machine

to interpret data much like humans use their senses to perceive the world around

it. Although humans perceive and interpret the world in ways that far surpass

1

Chapter 1. Introduction

today’s technological capabilities, it is a good benchmark to set. A good level of

perception will ultimately boost the level of situation awareness, greatly improving

the chances of making a good decision.

Classic methods for synthesizing robotic controllers are based on the manual

specification of it’s behavior. For greater levels of complexity, manually specifying

all possible use cases and scenarios a robot may encounter gets specially demand-

ing. This has motivated the application of artificial intelligence (AI) to synthesize

robotic controllers. In the 1990’s, the first experiments were conducted using

evolutionary computation (a subfield of AI and machine learning) to synthesize

robotic controllers with evolutionary algorithms (EAs). This approach started

having promising results [3, 4] as the evolutionary robotics (ER) field of study

started to gain shape. Using this approach, an initial random controller is opti-

mized through several generations. At each generation, a population of candidate

solutions is tested and the best performing solutions are mutated and passed on to

the next generation. With this method, we get an incrementally better controller

at each generation as we let evolution take care of the controller specification,

much like Darwin suggests evolution takes place in nature.

A common framework for robotic controllers is an artificial neural network

(ANN). This approach is inspired by the way the human brain works, with com-

puter models of axons and neurons. Each neuron usually has an activation function

that allows or inhibits the propagation of the information to the other neural units.

One of the main advantages of the ANN framework applied to robotic controllers

is the resistance to noise [5], introduced for example by the normal imperfections

of real-world hardware (sensors). The ANN framework is also a natural fit for

robotics, with its layer architecture allowing for a direct mapping of the sensors to

the input layer and the actuators to the output layer. Sensor activation in ANN’s

are usually represented by a value in specific range. For example, when detecting

an obstacle, a sensor can feed into the network a value in the range [0,1] where 1

would refer to a very close object and 0 would be provided when no obstacle is in

sight.

2

Chapter 1. Introduction

Environment perception in robotics is a natural evolution driven by the need

of making robots ever more autonomous and intelligent. Different approaches on

this subject have been studied over the years, based on voice [1], vision [6, 7, 8] and

touch [9] to perceive the environment. Furthermore, extracting relevant behavior

from a noisy perception is a major challenge that is addressed in studies like

[7, 8, 10]. Investigation on this subject although very diverse in the means of

perceiving and acting upon the environment, all fall primarily in the same setting:

a terrain environment.

With the proliferation of devices like drones and the expansion of robotic appli-

cations, it’s important to explore different environments and create solutions that

can be applied to multiple scenarios. In particular, this work will study terrain,

aerial and marine environments and the challenges that arise in both developing

cooperative active perception capabilities for swarms that are scalable to multi-

ple environments and the new challenges introduced by each of the environments’

singularities.

In the scope of this dissertation, perceiving the environment can be described

as the identification of objects, it’s features and further classification. Upon the

results of that classification, the robot can act on the environment, changing its

state. The perception of each robot is shared with the team-members in the field

of sight. This aggregates as a cooperative active perception approach to swarm

robotics.

We will focus in a task where a swarm of robots navigates through an environ-

ment with unidentified objects flying by. These objects carry a set of features, each

of which can be observed from a different viewpoint. The robots have three goals:

(i) identifying all the features of the objects, (ii) catching the objects that fall in

a certain category defined by the presence of a specific set of features and (iii)

keeping a formation like distribution on the environment, simulating a patrolling

behavior inside the arena. Although collective object identification is not a novel

issue, the introduction of marine and aerial singularities and the expectation of

creating an environment independent solution has not yet been studied and can

3

Chapter 1. Introduction

have profound applications, from marine surveillance operations to aerial forest

fires detection.

1.1 Objectives

The main objective of this dissertation is to present a novel approach to the de-

velopment and evolution of robotic controllers capable of collectively perceiving

and acting upon an environment, in a way that is transversal to many types of

environments (i.e. terrain, maritime and aerial).

In summary, the key objectives are:

• Develop a cooperative active perception approach that is scalable to different

types of environments and its singularities.

• The demonstration of the approach successfully working on a simulation

environment with better chances of real-world transferability.

1.2 Research Challenges and Contribution

To achieve the global goal of this dissertation, multiple challenges must be consid-

ered in various areas corresponding to each of the modules of the task we will be

focusing on. The module of object identification poses various learning challenges,

while the sensing also creates challenges in terms of vision and overcoming noisy

perception when confronted with the singularities of various environments that are

less linear than terrain environments.

Throughout this work, we will address two main research questions:

• Can EAs generate a cooperative active perception approach to swarm robotics?

• Can we develop a uniform solution that is scalable to different types of

environments and its singularities?

4

Chapter 1. Introduction

1.2.1 Other Scientific Contribution

During our research, we conducted a study related to the robustness of neuroe-

volved swarm controllers, whose results will bring relevant insights to this study

(see Chapter 4.2.3). This contribution has resulted in one conference publication:

• P. Romano, L. Nunes, A. L. Christensen, M. Duarte, S. M. Oliveira, “Genome

Variations: Effects on the robustness of neuroevolved swarm controllers”,

in Proceedings of the Iberian Conference on Robotics (ROBOT), Springer,

Berlin, Germany, 2015, pp. 309-319.

1.3 Research Method

The Design Science Research method will be followed to conduct this research,

as our focus is in the development and functional performance of the artifact

that will be created. We propose to create a method and an instantiation of the

artifact. This study will follow a problem centered approach, as the initial research

questions were derived from the study and observation of the initial problem.

To conduct the evaluation, simulation methods will be used: the artifact will

be executed in a simulation environment with artificial data. The research com-

munication will be carried out thought scientific publications.

1.4 Structure of the Dissertation

In Chapter 2, we start with a brief history on EAs, its application in robotics

and the common framework used for structuring the controllers, followed by a

review of studies on cooperative active perception approaches for swarm robotics.

In Chapter 3, we present our approach for a cooperative active perception control

system, detail the development iterations and discuss the controller performance

5

Chapter 1. Introduction

results. Chapter 4 will focus in testing and adapting the controller to multiple

environments. In Chapter 5, global conclusions of this thesis are presented.

6

Chapter 2

State of the Art

From health to space exploration, robots are widely used across several industries.

As it’s popularity increases and use cases become more diverse, one of the most

complex challenges in this discipline today revolves around robot autonomy and

intelligent behavior. Sensing the environment is one of the key features to enable

a fully autonomous behavior. To successfully develop a controller with these ca-

pabilities, several problems need to be considered, in multiple areas: environment

perception, object recognition and computer vision.

Furthermore, multirobot systems are becoming common in tasks like autonomous

surveillance and monitoring. In these cases, additional challenges (and opportuni-

ties) arise in the inter-robot cooperation for environment perception and decision

making.

In section 2.1, we start with an overview of ER, the technique that will be

used in synthesis of the robotic controllers developed throughout this dissertation.

In section 2.2, we review various approaches studied for solving the cooperative

active perception challenges in swarm robotics for autonomous robots.

7

Chapter 2. State of the Art

2.1 Evolutionary Robotics

2.1.1 Evolutionary Computation

Evolutionary computation is a sub-field of artificial intelligence in which EAs are

used. These algorithms are inspired on biological mechanisms, following the same

principles as the natural evolution described by Darwin. By creating populations

of potential solutions, evaluating and mutating them, solutions can be refined,

making this a global optimization method. The use of these principles for auto-

mated problem solving started in the 1950’s.

To conduct the evolution, the information for each individual is encoded in

a genome, like in biology. Mutation and cross-over is then applied to create the

descendants. Then, the evaluation phase takes place. A previously set fitness

function measures the quality of the solution. To create the next population, a

known approach is to integrate the top performing solutions (highest fitness) in

the next generation together with mutations of them. This process cycles and we

get back to the mutation and cross-over phase. In the first generation, a common

criterion is to generate a random genome. The fitness function plays one of the

most important roles in the evolution, defining the balance of the objectives to be

reached in order to get the most adequate solution after a couple generations.

2.1.2 Artificial Neural Networks (ANN)

ANNs are the most common framework of ER controllers. This approach is in-

spired by the way the human brain processes information, like biological neurons,

and was first introduced by Warren McCulloch and Walter Pitts in 1943 [11].

They created a computational model for a neural network based on mathematics,

stating that the nervous activities, neural events and relations can be described

in terms of propositional logic. Further studies started applying the model to the

development of robotic solutions [12].

8

Chapter 2. State of the Art

A typical neural network includes five components: (i) the input layer, (ii) the

hidden layer, (iii) the output layer, (iv) the weighted connections between each of

the previous components and (v) the activation function that converts the input

to the output in each of the nodes (neurons). The weighted connections as well

as the activation function for the neurons are the main parameters that mold an

abstract ANN framework to solve a concrete problem. When EAs are used, these

parameters are obtained via the global optimization methods characteristic of this

approach. This process replaces the manual specification of the solution and it is

the main advantage of using this method.

Early approaches were often based on a specific type of ANN, a discrete time

neural network. Continuous-time recurrent neural networks (CTRNN) were later

introduced by Joseph Chen in 1998 with appealing results [13], filling the gap

of the discrete time neural network’s lack of temporal dynamics, like short term

memory.

2.1.3 Applications in Robotics

ER comes as a natural concretization of EAs to synthesize robotic controllers.

These methodologies started emerging in the 1990’s. In 1992, M. Anthony Lewis

describes the development of a complex motor pattern generator to control a

walking robot in [3], where an ANN is used with weights determined by EAs. In

the same year, Dave Cliff presents results that demonstrate the success of using

same approach to create an accurate simulation model of a visually guided robot

[4]. Even when the fitness function didn’t imply the monitoring of visual inputs,

the evolution developed those capabilities to solve the task. The author considers

the results sufficiently promising of future success in the area.

Although the approach has proven successfully in evolving creative solutions

for simple behaviors like foraging, formation, aggregation, etc, one of the biggest

challenges in the area is scaling up the approach to more complex tasks, mainly

due to the bootstrapping problem, where the goal is so hard/distant that all

9

Chapter 2. State of the Art

individuals in the first generation perform equally bad not allowing evolution to

start. Transferring the robotic controllers from simulation to real environments

(crossing the reality gap) is another big challenge. These difficulties dissipated the

attention of this approach from the engineering end of the field.

In 1194, S. Nolfi suggests sampling the real environment through real sensors

and actuators on a physical robot to extract a simulation model that is closer to

the real environment [14], crossing the reality gap. This issue is also addressed by

N. Jakobi. In [15], he stated that it is possible to evolve robotic controllers that

behave as good in simulation as they do in real hardware by including appropriate

levels of noise and carefully designed simulation environments.

D. Floreano points out research directions for this area in the future [16], with

a framework to describe and apply fitness functions and an online continuous

adaptive controller. The author shows proof that these techniques allow for a

better transfer to real hardware and better scaling to complex solutions.

Another approach is presented by C. Hartland in [17]. This work presents an

approach for an anticipation enabled controller, where an error estimation of the

real-world compared to the simulation environment is fed to the controller and

integrated into the simulation process. The method allowed robots to successfully

cross the reality gap.

In 2007, M. Eaton presents one of the first application of EAs to develop

complex moving patterns of a humanoid robot [18] and successfully transfers the

solution to real hardware.

Miguel Duarte conducted a study [19] that introduced a novel methodology

for evolving and transferring controllers for complex tasks and solving the boot-

strapping problem, and effectively demonstrates the approach in simulation and

real hardware. The author suggests that complex tasks can be recursively split

into simpler tasks until these are simple enough to be evolved; controllers to man-

age the activation of these tasks are also evolved. Then, a tree-like composition

10

Chapter 2. State of the Art

of simple tasks and its activation controllers make up the solution for the initial

complex task.

More recently, K. Scheper presented a robotic solution with a behavior tree

framework optimized by an evolutionary algorithm [20]. The framework is com-

pared to the traditional ANN method. Contrary to the ANN architecture, the

controller generated by the presented method is understandable and can be man-

ually adapted to cross the reality gap and fit other purposes without having to run

the evolutionary process again. This approach presents an increase in performance

compared to current methods.

2.2 Cooperative Active Perception

As referred by Paul Fitzpatrick in [1], it is difficult to achieve robust machine

perception, but doing so is the key to intelligent behavior. The author also de-

fends an active perception approach, as figure/ground separation is difficult for

computer vision. This study captures young infants’ learning abilities and applies

it to robotics, giving insights on extending a robot’s perceptual abilities using ex-

perience to improve performance and interpersonal influences to drive a robot’s

perceptions by an external entity, like a human “caregiver” giving vocal instruc-

tions. This author conducted studies using active vision and active sensing for

object segmentation, object recognition and orientation sensitivity.

In 2006, Luís Merino [6] used a cooperative perception system for GPS-equipped

UAV’s to detect forest fires. Here, active vision plays the most important role.

A statistical framework is used to reduce the uncertainty of the global objective

(the fire position) taking into account each team-member sensor readings and their

uncertainty. Besides just cooperative perception, this study extends the teamwork

possibilities with heterogeneous teams. Here, teams are heterogeneous in their

sensing and processing capabilities. In a real-world scenario, many applications

require several sensors that cannot be carried by a single robot, so this approach

11

Chapter 2. State of the Art

provides a way to exploit complementarities of different UAV with different at-

tributes and sensors. In this study, some robots in the team have high detection

capabilities but also a high false alarm ration, so other robots in the heterogeneous

team are used to confirm or discard the information.

Still, the foundation of all this process is profoundly linked to a robust percep-

tion, as such, correctly identifying objects. As stated by Q. V. Le in [9], angles in

which objects can be viewed are the main variable to increase likeliness of iden-

tification. This study produces great results in object identification as the robot

is capable of observing the object in many angles until certainty is reached, and

was proven to be better than passive observation and random manipulation. The

author presents a novel approach to minimize uncertainty of the object, by max-

imizing mutual information in each step. Given a specific viewpoint, the robot

tries to choose the sequence of actions that will give him the most information

about the object, with less cost.

To drive the robot’s decision making based on an incomplete and noisy percep-

tion is another challenge described in 2010 by Matthijs T.J. Spaan in [7] and [8].

The authors propose a Partially Observable Markov Decision Process (POMDP)

to develop an integrated decision-theoretic approach of cooperative active percep-

tion, as POMDPs “offer a strong mathematical framework for sequential decision

making under uncertainty, explicitly modeling the imperfect sensing and actuation

capabilities of the overall system.”. In [7], the authors explore a scenario of co-

operation between fixed surveillance cameras and mobile robots where the main

task is to reduce uncertainty in it’s view of the environment (a global picture for

monitoring the system). The authors conclude the POMDP approach provide a

good framework for modeling an agent’s decision making when considering noisy

estimates. In [8], the authors apply the same approach to a Network Robot Sys-

tem (NRS) where a sequential decision making process is used. In this article, a

scenario is set up with both fixed and mobile sensors. Mobile sensors give pre-

cise observation, but with a cost (moving there and scarce resources). Therefore,

decisions on whether it’s worth to take robot A or B to a certain place have to

12

Chapter 2. State of the Art

be considered. The management of these local decisions until the global objec-

tive is reached is done sequentially. Later in 2014, the authors wanted to expand

the approach to include information gain and introduced a new type of POMDP,

POMDP-IR (Information Reward) in [10]. This new approach extends the ac-

tion space with actions that return information rewards. This way the approach

stays inside the POMDP framework with it’s advantages, while able to model

information-gain tasks.

Another robot control approach for a perception-driven swarm is presented

by Aamir Ahmad in 2013 [21]. Here, the author proposed and implemented a

method for a perception-driven multirobot formation control, with a weighted

summed term cost function to control multiple objectives. This study was suc-

cessful in demonstrating that the authors approach enables a team of homogeneous

robots to minimize the uncertainty of a tracked object while satisfying other cri-

teria such as keeping a formation. The approach consists of two main modules, a

controller and an estimator. The controller is a distributed non-linear model pre-

dictive controller (DNMPC) with the control objective of keeping the formation

while minimizing uncertainty of the tracked object. The estimator is based on the

particle filter localization method that estimates the target position and velocity

to enable cooperative target tracking. The novelty of this study is to integrate the

controller and estimator modules in the formation control loop. This is done by

including both the cooperative target estimate and the formation criteria in the

controller (DNMPC) cost function. This allows for the controller module on each

robot to perform the optimization after the estimator object position fusion took

place, making the optimization complexity constant (not dependent of the number

of mobile sensors in the team). Also, the decoupling of the optimization from the

estimator makes the approach more reliable in case of sensor or communication

failure.

When GPS or other reliable location features are unavailable, inaccurate self-

localization can have a strong negative impact in the global performance, as the

relative position of objects transposed to the host’s frame becomes inaccurate

[22]. Andreas Rauch presents an approach in 2013 to reduce the negative impact

13

Chapter 2. State of the Art

of inaccurate self-localization, applied to road vehicles. The author considers that

the “association and fusion of data from distinct sources are major challenges

in cooperative perception systems” and that temporal and spatial alignment is

crucial for combining the perception of multiple team-members. Deterministic,

probabilistic and numerical approaches were compared and the author concludes

that the proposed iterative closest point algorithm is more capable of reducing the

average error between the objects and the local perceived objects.

Seong-Woo Kim states that fusing data from remote sensors has various chal-

lenges [23]. The author focuses on the map merging problem and sensor multi-

modality between swarm members to successfully extend perception range beyond

that of each member’s sensors. Compared with cooperative driving without per-

ception sharing, this approach was proven better at assisting driving decisions in

complex traffic situations. The author proposes triangulation and map reckoning

to get the relative pose of the nodes allowing the information to be properly fused.

The approach assumes no common coordinate system making it more robust.

In 2015, Tiago Rodrigues addressed the sensor sharing challenges as well. In

[24] the author proposes local communication to share information sensor between

neighbors to overcome constraints of each member’s local sensors. Triangulation

is used to georeference the tracked object. The proposed approach is transparent

to the controller, working as a collective sensor. A variant in which the sensors

have a memory is also experimented. Both scenarios were able to achieve a much

better performance than classic local sensors.

André Dias conducted a study focused on the tracking of 3D objects in a mul-

tirobot perspective [25]. The main problems arise as the target dynamically moves

in complex environments. Limited sensor field of view and partial observability as

well as object occlusion may limit the system performance. The author consid-

ers that to achieve better results, different sources of uncertain information need

to be treated accordingly and proposes a multi-robot triangulation method as a

novel sensor combined with a decentralized stochastic filter, and achieved better

results than with the classical probabilistic filters used used to estimate the target

14

Chapter 2. State of the Art

position with different sources of uncertain information. The purpose of the study

is to solve initialization and data association problems.

Benjamin Burchfiel presents a novel approach to represent 3D objects for

robotic interaction [26] that present several advantages to current models. Classic

methods don’t allow knowledge transfer from previously seen objects, create large

databases of information or require manual training with object models (not very

scalable to real-world applications). The author develops a Bayesian Eigenobjects

representation that naturally facilitates object detection, pose estimation and clas-

sification. Once a model is learned, it is not necessary to retain the original object,

just a few parameters, creating a small database. Partial object completion is also

possible, very useful in real-world scenarios to estimate inaccessible viewpoints.

These techniques present a diverse contribution in terms of the robotic con-

trollers used, and the sensing and actuating capabilities. In most of the cited work,

active vision played the central role of the approach [1, 6, 9]. In [6], a statistical

framework is used in the controllers to estimate the target position, and perception

with heterogeneous teams is tested. In [8, 7, 10], POMDP’s were used to model

decision making under uncertainty (good for noisy perceptions). The control of

multiple objectives in a robotic solution is presented in [21]. Fusing data sensed

between multiple nodes also poses challenges studied in [23], and [24] presents a

shared sensor solution to the same problem. 3D object representation in robotics

is addressed in [26].

The studies presented above develop and test perception solutions centered in

the linear terrain environment, with few to no attention given to the development

of cooperative active perception systems using ER. The work presented in this

thesis differs in proposing a generic solution scalable to multiple types of environ-

ments and overcoming the challenges of the environments’ singularities, using ER

techniques.

15

Chapter 3

Cooperative Active Perception

Control System

In this chapter, we describe an approach for a swarm robotics control system ca-

pable of collectively identifying objects and making decisions based on the identi-

fication. It’s a common approach in robotic perception to unfold the identification

of objects as the identification of specific features that build to a known object

or class of objects [1, 9]. Our approach follows that direction: the identification

of an object is completed when all its key features are seen by at least one of

the robots in the team. Those features can be sensed: (i) directly by each team

member using it’s local sensor and (ii) indirectly through the shared sensor that

allows each robot to sense object features being seen by the teammates in sight.

From the controller’s point of view, there is no distinction between the local and

the shared sensing of a feature.

We’ll use a task in which a team of robots must collectively identify a set of

objects that fly by, and catch the ones that fall into a certain category (have a

specific set of features). The performance of the solution will be measured as the

percentage of objects identified and correctly caught by the swarm. Using this

criteria, a final evaluation will be done to the best controller resulting from the

evolutionary process. Results are presented in section 3.4.2. In Chapter 4, this

17

Chapter 3. Cooperative Active Perception Control System

solution will be transfered and adtapted to multiple environments (terrain, marine

and aerial), with various techniques that are studied and compared.

3.1 Methodology

The robotic controller will be obtained using the AI methods introduced in section

2.1 and is driven by a CTRNN. The network will be optimized throughout several

generations to maximize a fitness function that measures the solution performance.

Figure 3.1: Continuous Time Recurrent Neural Network (CTRNN) represen-
tation. I represents the input layer, H the hidden nodes layer and O the output

layer.

The information from the environment perceived by the robot through its

sensors (i.e. distance to objects, local and shared object features, distance to

teammates, etc) is mapped to the neural network inputs. A hidden neuron layer is

also used, with 5 hidden neurons. The neurons in this layer are connected to each

other and to them-selfs, maintaining a state (this allows for short term memory).

The output layer of the ANN is connected to the robots actuators, in this case the

wheels and the object catch decision (details on the controller architecture will be

presented in section 3.4.1). Equation 3.1 describes the network behavior:

τi
dHi

dt
= −Hi +

in∑
j=1

ωjiIi +
hidden∑
k=1

ωkiZ(Hk + βk) (3.1)

18

Chapter 3. Cooperative Active Perception Control System

Z(x) = (1 + e−x)−1 (3.2)

where τi represents the decay constant, Hi the neuron state and ωji the strength

of the synaptic connection between neurons j and i (the weighted connections rep-

resented by the arrows in Fig. 3.1). β represents the bias and Z(x) is the sigmoid

function (equation 3.2). in represents the total number of inputs and hidden the

total number of hidden nodes (5 were used). β, τ and ωji compose the genome

that encodes the controller behavior, and are the parameters randomly initialized

at the first generation and optimized throughout the evolutionary process, where

β ∈ [−10, 10], τ ∈ [0.1, 32] and wji ∈ [−10, 10]. Integrations follow the forward

Euler method with an integration step size of 0.2 and cell potentials set to 0 at

network initialization.

In our task, robots must cooperate between them to identify objects that ap-

pear on the environment. To model restrictions and complexity associated with

large objects identification (objects bigger than robots), each robot can only see

one feature at a time. This allows to increase the approach scalability to multiple

object sizes. With this limitation, cooperation is needed to sense all the features

and proceed with the identification. The key is for each individual to balance the

local view of one feature with the received shared perception, in order to sense

all features of a specific object. The robots should position themselves around an

object so that each one is situated in a vantage point that enables it to see one

feature directly through its local sensor and all the others indirectly, through the

shared sensor that receives the perceptions from nearby teammates. This setup is

further explained in section 3.2 and Fig. 3.2. Features don’t include information

about the object they belong to, so the controller must be able to link them to

the correct object, for a successful identification.

When the identification is complete, one of the robots should decide whether

or not to catch the object. The objects are divided in two categories: friends and

enemies. In the selection phase of the evolutionary process, robots are rewarded

19

Chapter 3. Cooperative Active Perception Control System

for catching enemies and receive a penalty for catching friends. Robots are not

given the category of the objects nor the features.

In summary, the key points of the controller behavior are:

• Balancing the local view of one feature with the shared perception received

from the nearby teammates to sense all the features and identify the object.

• Extract patterns from the features in an object to deduce its category (friend

or enemy) and act based on the conclusion (catch or ignore).

For our experiments, we will use JBotEvolver [27] (https://github.com/

BioMachinesLab/jbotevolver), a Java-based open-source neuroevolution frame-

work and versatile simulation platform for education and research-driven experi-

ments in ER.

3.2 Experimental Setup

To conduct our experiments, we will use a task in which 8 circular robots with a

radius of 5 cm are placed in a 4x4 m bounded environment. The initial position

of each robot inside the arena is random, drawn from a uniform distribution. The

unidentified objects have a 10 cm radius (twice the size of the robots) and are

generated in intervals of 1000 time steps (100 seconds).

Each object carries 4 features distributed around the 4 quadrants of the object’s

circular perimeter. In the scope of this study, object features are represented

by colors, each of which can be observed from a specific viewpoint. The object

features are contained in a predefined set of 8 features (4 enemy features and 4

friend features), unknown by the robots. While enemy objects always have the 4

enemy features, friend objects can have a mix of friend and enemy features (up

to a max of 2 enemy features). This ambiguity serves a more realistic model and

forces robots to evolve a more precise identification process. The order, mix and

20

https://github.com/BioMachinesLab/jbotevolver
https://github.com/BioMachinesLab/jbotevolver

Chapter 3. Cooperative Active Perception Control System

choice of the features are all uniformly distributed random processes that take

place at the generation of each object.

An object is considered identified if all the features are observed for 10 con-

secutive time steps. Each robot’s local features sensor can only view one feature

at a time with 2 eyes-like sensor placed at front of it’s body. The local perception

resulting from this sensor is shared with all the robots inside the teammates sensor

radius.

An example of the object identification scenario is depicted on Fig. 3.2. Here,

each robot is sensing a different feature of the object with it’s front facing local

sensor. All robots are inside of each other’s range of communication, thus being

able to share the local perception. As a result, the 4 robots are able to identify

the object, as each of them know all the features.

Robot 0

f1

f4f3

f2

Robot 1

Robot 2 Robot 3

C0,2

C0,1

C0,3 Object 0

Figure 3.2: Schematics of the simulation environment when identifying an
object. Object 0 represents the unidentified object, with f1 to f4 representing
it’s features; robot 0 to robot 3 represent the swarm; grey filled sensors represent
the local features sensor of each robot; C represents the communication between
each team-member (shared features sensor) and the circular lines represent the
field of communication of each robot and it’s teammates (radius of robot sensor)

21

Chapter 3. Cooperative Active Perception Control System

Let’s turn our attention to robot 0. With it’s front facing local object features

sensors, robot 0 knows the object in front of him has the feature f1. Robot 1, 2

and 3 are all in the range of communication of robot 0 and can sense respectively,

features f2, f3 and f4 with their own local object features sensor. As such, robot

0 will sense feature f1 thought it’s local sensor, but also features f2, f3 and f4

through the shared features sensor. Therefore, robot 0 will be able to sense all the

features of the object, identifying it. The same applies to robot 1, 2 and 3. If all

the robots know all the features of the object, they should now be able to deduce

it’s category and decide whether they should catch the object.

3.2.1 Evolutionary Process

To obtain the controller, the evolutionary process was conducted 10 times (evo-

lutionary runs) during 2000 generations. Each generation is composed of 100

individuals, each corresponding to a genome that encodes an ANN. To select the

best individuals in a generation, the considered fitness is the average of 30 samples.

Each sample is tested during 5000 time steps (500 seconds). For the test, every

robot in the swarm has the same genome. After each individual is evaluated, the

top 5 are included in the next generation and used to create the remanding 95

individuals of the population: each one of the top individuals generates 19 new

individuals by applying gaussian noise to each genome with a probability of 10%.

After the evolutionary process, a post evaluation test was conducted to as-

sert the fitness of the best performing controller (individual) that resulted from

the evolution. The fitness resulting from the test is the average of 100 samples

with different random seeds. The tests were held during 10000 time steps (1000

seconds), double the time used for the training. This was done to reinforce the

statistics.

22

Chapter 3. Cooperative Active Perception Control System

3.3 Experiments and Results

Multiple iterations of the development were carried out until a solid behavior to

solve the initial problem was achieved. Different scenarios, configurations and vari-

ables were tested until we reach the final configuration described in section 3.4 and

results presented and discussed in section 3.4.2. In this section, the development

progress will be described and options taken throughout the process discussed.

3.3.1 Object Identification

In the initial phase of the development, only the object identification behavior

was evolved. Robots were awarded for identifying both friends and enemies. At

this stage, the team was not required to make any decisions or take any actions

based on the identification. The evolution was set to optimize the fitness function

described on equation 3.3:

Fi = (ObjectsIdentified)i (3.3)

where ObjectsIdentified is the number of objects identified. It is important to

note how a very simple fitness function was able to evolve such a complex behavior,

one of the advantages of using EAs to synthesize robotic controllers.

In the initial phase of the solution development, an architecture was tested

in which the object features sensor consisted in 3 distinct readings that, in this

scenario, were linked to the RGB values of the color the feature was represented

by. This method was discarded as our initial experiments revealed that the evolu-

tionary process was finding unexisting patterns between RGB values, while similar

colors still corresponded to completely different features. For this reason and also

to further abstract the features implementation, a binary input that indicates

whether a specific feature is being seen or not was implemented.

23

Chapter 3. Cooperative Active Perception Control System

The density of objects on the environment was the main variable to influence

the solution performance. A value of 500 time steps between the appearance

of a new object was initially used. The ambiguity of having multiple objects

on the environment and the possibility of them being too close to each other

stopped the robots from understanding the features belonging to each (since no

distinction is made) and gave very poor values for object identification (< 20%). A

value of 1000 time steps between the generation of each object was able to reduce

the ambiguity and reach a very high object identification percentage (95,7%).

Nonetheless, scaling the approach with multiple objects to identify at the same

time is necessary for a realistic real word solution and will be done in the next

iterations of the solution development.

Object speed on the environment also influenced results as the robots needed

time to find and position themselves around the objects, specially in our bounded

experiment. A value of 0.15 cm/s was found to give good results, allowing each

object to stay on the environment long enough to be recognized.

3.3.2 Object Identification and Catching

After a solid object identification controller, the catching actuator was added to

the equation. At this point, the evolutionary process is set to evolve a two step

controller: (i) object identification and (ii) object class inference based on feature

patterns. The catching decision is a direct result from step ii. Solution perfor-

mance is now measured in terms of the number of enemies caught. Number of

enemies identified serves as an auxiliary metric; no attention is now given to the

identification of friends.

A formation component was added to the fitness function, to stimulate the

robots to evolve a patrolling behavior and spread out inside the arena, maintaining

a known distance to each other. The evolution is set to optimize the fitness function

described in equation 3.4:

24

Chapter 3. Cooperative Active Perception Control System

Fi = αi + βi (3.4)

αi =

timesteps∑
n=0

10−2, if ADN ∈ [Sr − Sr

10
, Sr +

Sr

10
]

−|ADN − Sr| × 10−2, else
(3.5)

βi =
Enemyidentified

5× 10−3
+
Enemycaught

10−3
− Friendscaught

2× 10−3
− Unidentifiedcaught

10−3
(3.6)

where αi corresponds to the formation component of the fitness function and βi

corresponds to the object identification component. ADN is the average distance

of the robots to it’s closest team-mate, Sr is the robot teammates sensor radius.

Enemyidentified is the total number of enemy objects that were identified during

the test, Enemycaught corresponds to the total number of enemy objects caught.

Friendscaught and Unidentifiedcaught corresponds to the total number of friends

and inoffensive objects caught, respectively. The formation component awards the

robots for keeping a distance between each other that corresponds to the radius

of their teammates sensor (Sr) with an error margin of Sr

10
. This awards them for

dispersing around the environment in search for objects while keeping a known

distance to their teammates.

This controller scored: (i) an "enemy identification rate" of 77%, (ii) an "enemy

catch rate" of 73% and (iii) a "friends and unidentified objects catch rate" of 2%

and 8% respectively. This evaluation is an average of 100 samples during 1000

time steps and was done to the best controller resulting from the evolution.

25

Chapter 3. Cooperative Active Perception Control System

3.4 Final Controller

To finalize the controller, our attention turned to pushing the boundaries and

increasingly raise the complexity of the problem. To make the approach more

realistic, the unidentified objects now have more degrees of freedom and can appear

from any side of the arena, moving to the opposite side. In 30% of cases, two

objects will be on the arena at the same time, also increasing the identification

complexity; in the remainder 70% of cases only one object is inside the arena at

the same time. The position of the object is randomly assigned when only one

object is on the arena at a time and fixed on the bottom and top or left and right

portions of the arena when two objects are on the arena at the same time. The

possibility of having two objects inside the arena at the same time should force the

robots to separate in groups to proceed with the identification. Object speed is

now variable, assigned to each object at the moment of creation and corresponding

to a random speed drawn from a uniform distribution, between 0.15 and 0.35 cm/s.

This final experiment consolidates the solution and adds enough complexity

to state that the approach is realistic and solid, mainly due to the capability of

identifying multiple objects on the arena at the same time at variable speeds and

from different directions. In the next section, a detailed description of the final

controller architecture is shown. Results are presented in section 3.4.2.

3.4.1 Controller Architecture

The controller architecture is composed of 2 actuators and 5 sensors. The actuators

consist of (i) two wheels that allow the robot to move inside the environment

at a maximum speed of 10 cm/s and (ii) a binary output that represents the

categorization decision and allows the robot to catch the objects. The sensors

include: (i) a wall sensor for the robot to sense the distance to the boundaries of

the arena, (ii) a robot sensor so that each robot senses the distance to the nearest

team mate, (iii) an object distance sensor for each robot to sense the distance to

the closest object; to identify the objects, an object features sensor (iv) is used,

26

Chapter 3. Cooperative Active Perception Control System

enclosing both the local and the shared perception, allowing the robot to sense the

feature in sight, as well as the shared features sensed from the teammates in the

field of communication (determined by sensor ii). To allow the robots to disperse

in groups when multiple objects are on screen, a robot density sensor (v) is used

so each robot knows the percentage of robots that are near, according to the total

number of robots in the swarm.

The sensors follow the configuration depicted on Fig. 3.3. Sensors i), ii) and

iii) are placed all around the perimeter of the robot and sensor iv) consists in 2

front facing sensors with an eye-like distribution, for a more realistic approach

since the perception is based on vision. This also allows the robot to sense the

path to reach the object (due to the sensors overlapping at the center).

Wall, Robot distance and Object distance sensors
(i,ii and iii)

1 m

0.75 m

45º

Object features sensor (iv)

Eyes overlapping (15º)

Figure 3.3: Robot sensors representation. 4 sensors with 90o opening angle
for sensors i), ii) and iii) and 2 eyes-like sensor with 45o opening angle and 15o

of overlapping for sensor iv)

To catch the objects, robots have a binary actuator. When active, the closest

object is caught by the robot if situated at a maximum distance of 0.1 m.

All the sensors, actuators and corresponding ANN inputs and outputs are

described in Table 3.1.

The reading of each sensor is mapped to the respective neural network input.

For distance based sensors (i, ii and iii), the input follows Eq. 3.7

i =
range− distance

range
(3.7)

where range is the maximum range of the sensor and distance is the distance

from the robot to the target.

27

Chapter 3. Cooperative Active Perception Control System

Table 3.1: Controller Architecture: Robot Sensors and Actuators and corre-
sponding ANN Inputs and Ouputs

Sensor ANN Inputs

i) Wall Sensor 4
Reading in range [0,1] depending (total of 4 sensors around the

on distance to closest wall robot each with 90◦ aperture)

ii) Robot Sensor 4
Reading in range [0,1] depending (total of 4 sensors around the

on distance to closest robot robot each with 90◦ aperture)

iii) Object Distance Sensor 4
Reading in range [0,1] depending (total of 4 sensors around the

on distance to closest robot robot each with 90◦ aperture)

iv) Object Features Shared Sensor 8 (local) + 8 x Nclose robots (shared)
Binary readings corresponding (2 local sensors arranged like

to the feature in sight eyes, with 35◦ aperture and
for the closest object 10◦ between the eyes)

v) Robot Density Sensor 1
Reading corresponding (1 sensor)

to the percentage of robots
in sight according to total

Actuator ANN Output

i) Two-Wheel Actuator 2
Output in range [0,1] depending (left and right wheel)

on wheel speed

ii) Object Catch Actuator 1
Binary output to catch an (catches closest object

object at max distance of 0.1 m)

For sensor iv), each preprogrammed feature corresponds to a specific ANN

input that can be either 1 or 0 whether that feature is being seen or not. This

applies to both the local and the shared inputs, as there is no distinction between

the two from the controller standpoint. Sensor v) consists in a single value: the

percentage of robots in sight, against the total number of members in the swarm.

3.4.2 Results and Discussion

The evolutionary process was carried out to optimize the fitness function described

in equation 3.4. The best controller resulting from the evolution scored an average

fitness of 4239± 2573. This corresponds to: (i) an "enemy identification rate" of

28

Chapter 3. Cooperative Active Perception Control System

71%, (ii) an "enemies caught ratio" of 64%, a "friends and unidentified objects

caught ratio" of 2% and 7% respectively (seen as false positives of the identification

process).

In 80% of the evolutionary runs, the obtained controller successfully solved the

task. The robots evolved a behavior in which the team performs a dispersed search

around the arena. When one of the teammates senses an enemy object nearby,

the robot and it’s near teammates get closer and surround it, circumnavigating

the object while front-facing it until the identification is complete. When the

enemy is identified, one of the teammates decides to catch it, after which they

disperse and go back to the search. If the robots sense a friend object, the level of

attention given is lower. Less than 4 robots concentrate on the friend objects and

they quickly disperse. These are not identified. In 20% of the evolutionary runs, a

solution was not found, with the robots evolving a backwards motion behavior that

rendered them incapable of visualizing the objects. On average, a good behavior

was found around generation 700.

The behavior is also efficient, as only part of the team concentrates on the

object that is being identified and no more than 3 robots concentrate on a friend

object. The remainder of the team keeps searching for other objects that may

appear and could get lost if an unnecessary number of robots concentrated on the

identification of only one object.

3.5 Generalizing the Approach

One of the main advantages of the presented controller is it’s genericity. ER

provides the flexibility of developing solutions based on simple criteria that can

be evolved and adapted to multiple setups. The simplicity of the fitness function

(number of objects identified and formation component) and the abstraction of

the features sensor (binary reading that indicates whether a specific feature is

being seen or not) makes this solution easily adaptable to multiple environments,

scenarios and types of objects and features.

29

Chapter 3. Cooperative Active Perception Control System

Object features are a fixed set of possibilities linked to a specific input on the

neural network. In our experiments, features are represented by colors, but can be

adapted to any other set of features (i.e. object characteristics or sizes), but not

limited to. For example, features can also represent the degree of certainty wheels

were identified in a moving object, or a certain shape that characterizes a known

class of objects. Feature distribution is also scalable. Features can be distributed

on multiple objects (identified as a group).

The object catch decision output of the neural network corresponds to the robot

categorizing an object as an enemy. In the scope of this project, we considered

catching the object as the representation of this decision but, once again, this

can be scaled to other approaches (i.e. notifying a central unit, registering the

identification).

In Chapter 4, the presented solution will be adapted to a set of environments

(terrain marine and aerial), modeled in simulation. Techniques for obtaining a

global controller capable of solving the proposed task in all these enviroments will

be studied.

30

Chapter 4

Applying and Adapting the

Controller to Multiple Environments

In the previous chapter, we developed a cooperative active perception control sys-

tem that successfully solved our task. We then scaled the approach introducing

random variations of parameters like object speed and possible directions. Al-

though these factors allow the evolution of a more solid, robust and realistic solu-

tion, one class of real-world complexity was purposely ignored: external factors.

In the real-world, external factors heavily influence the swarm performance.

Furthermore, these factors are mostly singular to each type of environment and of

random nature. In our work, up until this point, both the evolutionary process and

the evaluation of the controller was conducted under ideal environment conditions.

As stated in Chapter 2, the global contribution of this work is not only to present

a novel cooperative active perception solution using EAs, but also to fill a gap in

the current state of the art: generic solutions, adaptable to multiple environments

and it’s singularities.

In this chapter, we will model different environments, mainly governed by

external conditions that influence the swarm performance. These conditions are

models of the main singularities found on each environment. We will test our

solution on the different environments with different types of evolution and discuss

31

Chapter 4. Applying and Adapting the Controller to Multiple Environments

ways to evolve a global solution that adapts to all of them. Classic methods

of obtaining a robust controller capable of crossing the reality gap (i.e. noisy

evolution [15]) will also be considered.

Each one of the environments studied presents several relevant practical ap-

plications. The terrain environment can simulate obstacles present on complex

terrain scenarios; the marine environment can help develop swarms capable of

running patrolling and exploration marine tasks; and aerial applications range

from aerial drone obstacle avoidance to object detection.

4.1 Modeling the Environments

Three main classes of environments will be modeled in this section: (i) terrain, (ii)

maritime and (iii) aerial. These environments represent the majority of conditions

the swarm might encounter in a multi-environment real-world scenario. Models of

the environments will globally focus on external factors like obstacles, maritime

currents or wind. All the agent’s solution are built upon the solution presented in

Chapter 3.

4.1.1 Terrain Environment

To model the terrain environment, we focused our attention on two main charac-

teristics: (i) accessibility and (ii) irregularities. While terrain irregularities can be

handled by the robotic driver and thus don’t need to be handled by the controller,

accessibility issues like obstacles or object occlusion will benefit from an optimized

behavior to solve the task in these conditions. In our model, we included a set of

rectangular obstacles distributed around the environment. This creates accessi-

bility difficulties as robots need to deviate from these obstacles to see the objects

and proceed with the identification. Robots cannot transpose the obstacles nor

see through them.

32

Chapter 4. Applying and Adapting the Controller to Multiple Environments

Inside the same 4x4 m bounded environment with 8 robots and the unidentified

objects, a maximum number of 7 obstacles are added, with a minimum value of

25 cm and a maximum value of 65 cm for both width and height. The number

of obstacles on the environment, it’s positions, width and height are all random

processes drawn from a uniform distribution. A sketch of the modeled terrain

environment is depicted in Fig. 4.1:

Robot 0

f1

f4f3

f2

Robot 3

Robot 2

Robot 1

Object 1

f1

f4f3

f2

Object 0

Obstacle 0

Obstacle 1

Obstacle 2

Obstacle 3

Figure 4.1: Schematics of the modeled terrain environment when searching
for objects. Object 0 and 1 represents the unidentified objects, with f1 to f4
representing it’s features; robot 0 and robot 3 represent the swarm; grey filled
sensors represent the local features sensor of each robot; Obstacles 0 to 3 rep-
resent the randomly placed objects on the environment with random width and

height between [25,65] cm

where only 4 robots and 2 unidentified objects are placed inside the environ-

ment (for simplification). With this scenario, we simulate a terrain environment

by modeling its increased difficulty in finding and identifying the objects.

4.1.2 Marine Environment

The marine environment model is based on previous studies that successfully ob-

tained swarm robotics controllers capable of crossing the reality gap in a marine

33

Chapter 4. Applying and Adapting the Controller to Multiple Environments

environment. Miguel Duarte [28] presents a swarm controller obtained via evolu-

tionary robotics in simulation, capable of working in a real-world marine environ-

ment. In this study, the marine environment model used to train the controller in

simulation was based on real measurements of the robots motion taken in the wa-

ter, but without physics simulation and fluid dynamics, as these would make the

evolution process too expensive to carry out with reasonable resources. Our model

of the marine environment follows this approach and is centered around two main

characteristics: (i) a constant dragging current and (ii) robots movement inertia.

A sketch of the marine environment is depicted in Fig. 4.2.

Robot 0

f1

f4f3

f2

Robot 3

Robot 2

Robot 1

Object 1

f1

f4f3

f2

Object 0

Fcurrrent

Fcurrrent

Fcurrrent

Fcurrrent

Figure 4.2: Schematics of the modeled marine environment when searching
for objects. Object 0 and 1 represent the unidentified objects, with f1 to f4
representing it’s features; robot 0 to robot 3 represent the swarm; grey filled
sensors represent the local features sensor of each robot; Fcurrent represents the
random constant dragging current applied to the robots’ movement with mag-

nitude [-0.1,0.1] cm/s

The constant dragging current is characterized by a vertical and an horizontal

magnitude between [-0.1,0.1] cm/s for each axis. The final current is the 2D sum

of both axis and can thus drag the robot in any direction. The value of the magni-

tudes is randomly drawn from a uniform distribution and is fixed throughout each

sample (constant current). Inertia in the robots movement is the main charac-

teristic of this environment, with wheel speed for each robot following Algorithm

1:

34

Chapter 4. Applying and Adapting the Controller to Multiple Environments

Algorithm 1 Marine environment robot inertia algorithm
if targetWheelSpeed > previousWheelSpeed+maxIncrementUp then
wheelSpeed← previousWheelSpeed+maxIncrementUp

else
if targetWheelSpeed < previousWheelSpeed−maxIncrementDown then
wheelSpeed← previousWheelSpeed−maxIncrementDown

else
wheelSpeed← targetWheelSpeed

end if
end if

where targetWheelSpeed represents the speed determined by the controller,

previousWheelSpeed represents the previous actual speed of the robot, wheelSpeed

represents the actual current wheel speed andmaxIncrementUp andmaxIncrementDown

represents the maximum increment or decrement that the actual speed can suffer

from one iteration to the next. maxIncrementUp and maxIncrementDown as-

sume a value of 0.1 m/s. This algorithm is applied to each of the robot’s wheels

independently.

4.1.3 Aerial Environment

Controlling an Unmanned Aerial Vehicle (UAV) encloses several problems, mostly

related to wing gusts and other aerodynamic efforts. Studies like [29, 30, 31] ad-

dress some of these challenges. In [29], a backstepping approach is used, together

with an estimation of the unknown aerodynamic forces to stabilize the position

of the vehicle in the presence of aerodynamic forces. In [30], the authors study

the influence of wind gusts on the system concluding that it is a crucial prob-

lem for real-world outdoor applications, especially on an urban environment. F.

Leonard [31] refers that agility, maneuverability and the capability of operating

under rough conditions are the current trends in helicopter design. A big part of

this is to improve tracking performance and disturbance rejection. Control design

of autonomous flying systems has become a very challenging area of research.

Up to some extent, the effects of the wind in an aerial environment are similar

to the effects of sea currents in a maritime environment, but the variable nature

35

Chapter 4. Applying and Adapting the Controller to Multiple Environments

of the wind brings a degree of complexity that makes it relevant for a separate

study. According to the current state of the art, we will base our model of the

aerial environment in the simulation of wind and wind gusts, as these seem the

most relevant challenges.

It is important to note that the aerial environment considered in this study is

a simplified 2D model crafted to study wind and wind gusts effects on the swarm

behavior. While our solution can be applied to quadcopters or other rotocrafts

with a high level of abstraction regarding motion control, it doesn’t include the

necessary constraints to be applied in planes or other full aerial vehicles where

the controller deals with low level motion control. This would require a motion

approach other than the two wheel model considered, falling out of the scope of

this work. A sketch of the aerial environment is depicted in Fig. 4.3.

Robot 0

f1

f4f3

f2

Robot 3

Robot 2

Robot 1

Object 1

f1

f4f3

f2

Object 0

Fwind

Fwind gust

Fwind

Fwind

Fwind

Fwind gust

Fwind gust

Fwind gust

Figure 4.3: Schematics of the modeled aerial environment when searching for
objects. Object 0 and 1 represent the unidentified objects, with f1 to f4 repre-
senting it’s features; robot 0 to robot 3 represent the swarm; grey filled sensors
represent the local features sensor of each robot; Fwind represents the random
constant dragging current applied to the robots’ movement with magnitude [-
2,2] cm/s; Fwind gust represents the random constant dragging current applied to

the robots’ movement with magnitude [-0.1,0.1] cm;

Our model of an aerial environment is based on (i) constant wind (Fwind) and

(ii) random wind gusts (Fwind gust). The constant wind is modeled like the constant

sea current described in section 4.1.2: a vertical and an horizontal magnitude

36

Chapter 4. Applying and Adapting the Controller to Multiple Environments

between [-2,2] cm/s for each axis. Wind gusts have a period between [0,20] seconds

sorted at the beginning of each wind gust, together with the magnitude, being

constant throughout the entire period. At the end of each wind gust period, it is

randomly sorted whether the next period will be silent or windy. Constant and

random wind magnitude, gust duration and whether a gust is present or not are

all random values drawn from a uniform distribution.

Throughout the next sections, we will test the controllers resulting from four

different types of evolution: (i) environment specific, (ii) ideal, (iii) noisy and (iv)

hybrid in each of the different environments described above.

4.2 Evolving and testing the solution on different

setups

Machine learning mechanisms like the search algorithms used to obtain the con-

trollers, learn from observing the environment and measuring the performance of

each candidate solution. As we place the robots in different settings, the opti-

mization will follow different paths and we obtain different solutions, specifically

optimized to the setup the evolutionary process was conducted within. In this

section, we conduct the evolutionary process in four main setup categories: (i) in

each environment, (ii) in an ideal setup, (iii) in a noisy environment and (iv) in

a hybrid scenario. The hybrid scenario consists in each sample being conducted

in a different environment (terrain, marine or aerial). We will then transfer the

controllers obtained to each environment and test its performance.

All the experiments in this section will be carried out 10 times (evolutionary

runs) during 2000 generations with a population of 100 individuals tested during

1000 timesteps, each experiment repeated 30 times (samples). A total of 60 evo-

lutionary processes were conducted to present the results in this chapter, taking

29 days to complete on a computer grid with average availability of 75 workers,

with a maximum of 3 evolutionary processes evolving in parallel.

37

Chapter 4. Applying and Adapting the Controller to Multiple Environments

4.2.1 Environment-specific Evolution and Results

To set a benchmark for the target controller behavior in each environment, we

conducted separate evolutionary processes in the terrain, marine and aerial en-

vironments. This way, we will obtain controllers specifically optimized for each

environment. If we find controllers obtained via other methods to perform com-

parably good as the controllers obtained in this section, the generic solution will

be validated.

Controllers will be tested not only in the environment they were evolved in

but also in all the others. The evolutionary process was conducted to optimize the

fitness function set in Eq. 3.4 with the configuration detailed in Table 3.1 in the

environments described in section 4.1.

As in Chapter 3, the tests are done to the best controller resulting from the

evolution, with an average of 100 samples during 10000 time steps.

4.2.1.1 Terrain Evolution

When evolving the controller in the terrain environment, the best controller re-

sulting from the evolutionary process scored: (i) an average fitness of 2874 ± 1922,

(ii) an "enemy identification rate" of 54%, (iii) an "enemy catch rate" of 42% and

(iiv) a "friends and unidentified objects catch rate" of 1% and 5%, respectively.

Results obtained when tested on an ideal environment. Controller performance in

the different scenarios is condensed on Table 4.1 and Fig. 4.4.

Table 4.1: Terrain environment evolution: tested in multiple environments

Scenario Fitness ± Stdev Enemies identified (%) Enemies caught (%) Friends caught (%) Unidentified caught (%)

Ideal Environment 2874 ± 1922 54% 42% 1% 5%

Noisy Environment -529 ± 1713 5% 0% 0% 4%

Terrain Environment 2158 ± 1433 41% 32% 1% 3%

Marine Environment 694 ± 1415 25% 11% 0% 3%

Aerial Environment 752 ± 801 22% 13% 0% 3%

Hybrid Environment 1263 ± 1056 31% 20% 1% 3%

38

Chapter 4. Applying and Adapting the Controller to Multiple Environments

●

●

0

2000

4000

6000

Ideal Noisy Terrain Marine Aerial Hybrid

Scenario

F
itn

es
s

Figure 4.4: Terrain environment evolution: tested in multiple environments

In this scenario, 80% of the evolutionary runs successfully evolved a controller

that solved the proposed task. When observing the solutions, two distinct behav-

iors were found. 40% evolved a behavior where the robots disperse and search

around the environment until an object gets in sight. In another 40%, the evolu-

tion went on a different direction: a behavior in which the robots follow each other

around the arena doing a group search. In test cases where the random obstacles

confined rooms inside the arena, groups of robots spreaded and patrolled only

one room with circular motions around themselves. 20% of the evolutionary runs

evolved a backwards motion behavior and were not able to solve the problem. On

average, a good behavior was found around generation 800.

We notice the controller was not able to adapt to the noisy environment and

scored a low performance on the marine and aerial environments.

4.2.1.2 Marine Evolution

When evolving the controller in the marine environment, the best controller re-

sulting from the evolution scored: (i) an average fitness of 3067 ± 1668, (ii) an

"enemy identification rate" of 56%, (iii) an "enemy catch rate" of 46%, (iv) a

"friends and unidentified object catch rate" of 2% and 7%, respectively. Results

when tested on an ideal environment. Controller performance in the different

scenarios is condensed on Table 4.2 and Fig. 4.5.

39

Chapter 4. Applying and Adapting the Controller to Multiple Environments

Table 4.2: Marine environment evolution: tested in multiple environments

Scenario Fitness ± Stdev Enemies identified (%) Enemies caught (%) Friends caught (%) Unidentified caught (%)

Ideal Environment 3067 ± 1668 56% 46% 2% 7%

Noisy Environment -492 ± 1600 4% 0% 0% 4%

Terrain Environment 2191 ± 1261 43% 34% 2% 5%

Marine Environment 3473 ± 1549 59% 51% 2% 7%

Aerial Environment 737 ± 684 24% 13% 0% 4%

Hybrid Environment 2242 ± 1120 42% 34% 1% 5%

● ●

● ●●

0

2000

4000

6000

Ideal Noisy Terrain Marine Aerial Hybrid

Scenario

F
itn

es
s

Figure 4.5: Marine environment evolution: tested in multiple environments

In this scenario, 90% of the evolutionary runs evolved a controller capable of

solving the proposed task. 10% evolved a backwards motion behavior and were

unable to solve the task. 70% evolved the dispersed search behavior, with the

remaining 20% evolving the teammates follow group search behavior. On average,

a good result to solve the task was found generation 800, with fitness stabilizing

since then.

We notice the controller was not able to adapt to the noisy environment and

scored a low performance on the aerial environment.

4.2.1.3 Aerial Evolution

When evolving the controller in the aerial environment, the best controller result-

ing from the evolution scored: (i) an average fitness of 2385 ± 1026, (ii) an "enemy

identification rate" of 48%, (ii) an "enemy catch rate" of 40%, (iii) a "friends and

unidentified object catch rate" of 6% and 7%, respectively. Results when tested

40

Chapter 4. Applying and Adapting the Controller to Multiple Environments

on an ideal environment. Controller performance in the different scenarios is con-

densed on Table 4.3 and Fig. 4.6.

Table 4.3: Aerial environment evolution: tested in multiple environments

Scenario Fitness ± Stdev Enemies identified (%) Enemies caught (%) Friends caught (%) Unidentified caught (%)

Ideal Environment 2385 ± 1026 48% 40% 6% 7%

Noisy Environment 92 ± 210 15% 2% 3% 1%

Terrain Environment 1715 ± 799 37% 31% 5% 5768%

Marine Environment 768 ± 901 26% 12% 1% 3%

Aerial Environment 1428 ± 618 35% 23% 2% 4%

Hybrid Environment 1334 ± 777 34% 23% 3% 4%

● ●

●

●

0

2000

4000

6000

Ideal Noisy Terrain Marine Aerial Hybrid

Scenario

F
itn

es
s

Figure 4.6: Aerial environment evolution: tested in multiple environments

In this scenario, 90% of the evolutionary runs were able to solve our initial

task. 10% was not able to solve the task and, evolving a backwards motion be-

havior. In all controllers, the robots were always close together: search dispersion

found in other controllers was not found here. For this controller, performance

was globally lower than the controllers on previous sections, except on the aerial

environment. On average, a good behavior was found around generation 800, with

fitness stabilizing ever since.

We notice the controller was not able to adapt to the noisy environment and

scored a low performance on the marine environment.

41

Chapter 4. Applying and Adapting the Controller to Multiple Environments

4.2.2 Ideal Evolution applied to Multiple Environments

The results for the controller evolved under ideal conditions is explained in section

3.4.2. In this section, the controller will be transfered to each environment, with

the respective performance condensed on Table 4.4 and Fig. 4.7.

Table 4.4: Ideal environment evolution: tested in multiple environments

Scenario Fitness ± Stdev Enemies identified (%) Enemies caught (%) Friends caught (%) Unidentified caught (%)

Ideal Environment 4239 ± 2573 71% 64% 2% 7%

Noisy Environment -90 ± 515 6% 0% 0% 1%

Terrain Environment 2576 ± 1340 45% 37% 1% 3%

Marine Environment 843 ± 1518 25% 12% 0% 2%

Aerial Environment 836 ± 748 22% 13% 0% 3%

Hybrid Environment 1557 ± 1112 33% 23% 0% 3%

●

●

0

2000

4000

6000

Ideal Noisy Terrain Marine Aerial Hybrid

Scenario

F
itn

es
s

Figure 4.7: Ideal environment evolution: tested in multiple environments

When transferring the controller to the different environments, we notice the

controller was not able to adapt to the noisy environment and scored a low per-

formance on the marine and aerial environments. Due to it’s characteristics, these

seem to be the hardest for the ideal evolved controller to adapt to. The terrain

environment appears to be the easiest for the ideal evolved controller to deal with.

4.2.3 Noisy Evolution and Results

Introducing noise on the ANN Inputs during the evolutionary process is one of

the known ways of creating a solution that is able to cope with slightly different

42

Chapter 4. Applying and Adapting the Controller to Multiple Environments

conditions than the ideal environments usually used during training, thus boosting

the ability to cross the reality gap. In other words, noise can be seen as an abstract

and multi-purpose way of generating a more robust solution.

In a separate study, we introduced the concept of Genome Variations (GV)

[32]. This study proposes a technique that is based on mutating the individual

controllers of each robot prior to evaluation. Variations are obtained by adding

noise to the weights of the ANN controlling the robots. GV represents a novel

approach to the evolution of robust behaviors. Although this study revealed some

interesting insights, the approach is not as viable as the classic input noise methods

also studied in the article. As such, the latter will be used in this section.

All sensors are affected by the noise, with a fixed offset of [-0.1,0.1] and random

noise [-0.1,0.1] for each reading, as suggested in [32]. For object features, a 10%

probability of having each binary reading state reversed is used, a value equiva-

lent to the previous. Offset, noise values and binary state reversions are random

processes drawn from a uniform distribution

When evolving the controller in the noisy environment, the best controller

resulting from the evolution scored: (i) an average fitness of 2120 ± 428, (ii) an

"enemy identification rate" of 59%, (ii) an "enemy catch rate" of 47%, (iii) a

"friends and unidentified objects catch rate" of 42% and 4%, respectively. Results

when tested on an ideal environment. Controller performance in the different

scenarios is condensed on Table 4.5 and Fig. 4.8.

Table 4.5: Noisy environment evolution: tested in multiple environments

Scenario Fitness ± Stdev Enemies identified (%) Enemies caught (%) Friends caught (%) Unidentified caught (%)

Ideal Environment 2120 ± 428 59% 47% 42% 4%

Noisy Environment 2186 ± 319 58% 48% 43% 4%

Terrain Environment 1526 ± 209 45% 36% 32% 4%

Marine Environment 191 ± 714 25% 15% 13% 6%

Aerial Environment 443 ± 193 22% 10% 9% 2%

Hybrid Environment 809 ± 388 31% 20% 18% 3%

The noisy evolution is not only the lowest performing solution of all, but the

43

Chapter 4. Applying and Adapting the Controller to Multiple Environments

●

●

●

● ●
0

2000

4000

6000

Ideal Noisy Terrain Marine Aerial Hybrid

Scenario

F
itn

es
s

Figure 4.8: Noisy environment evolution: tested in multiple environments

first that globally failed in solving the proposed task. When the behavior is ob-

served, we notice that in 100% of the evolutionary runs, the search and identifi-

cation behavior appears correct and similar, but the swarm catches both enemies

and friends, not being able to distinguish them. The controller thus failed mainly

in the feature’s categorization and object identification. In 90% of the evolutions,

a shaky, rippled or less smooth motion with more aggressive and quantized move-

ments was observed. Fitness stabilized around generation 1000.

4.2.4 Hybrid Evolution and Results

Another possible method capable of generating a more robust and scalable con-

troller is by integrating all the environments in the same evolutionary process,

thus generating a controller that is optimized to all the different environments: a

hybrid controller.

In this scenario, the fitness of every individual used for the selection phase

will be the average performance of the controller on each of the environments.

In each experiment, the solution will be tested on the terrain, marine and aerial

environments for 1
3
of the total number of samples each. This will conduct to a

solution that, in theory, is equally optimized for all 3 environments.

44

Chapter 4. Applying and Adapting the Controller to Multiple Environments

When evolving the controller in the hybrid scenario, the best controller result-

ing from the evolutionary process scored: (i) an average fitness of 3031 ± 1292, (ii)

an "enemy identification rate" of 54%, (iii) an "enemy catch rate" of 45% and (iv)

a "friends and unidentified objects catch rate" of 4% and 6%, respectively. Re-

sults when tested on an ideal environment. Controller performance in the different

scenarios is condensed on Table 4.6 and Fig. 4.9.

Table 4.6: Hybrid environment evolution: tested in multiple environments

Scenario Fitness ± Stdev Enemies identified (%) Enemies caught (%) Friends caught (%) Unidentified caught (%)

Ideal Environment 3031 ± 1292 54% 45% 4% 6%

Noisy Environment 157 ± 220 16% 0% 0% 0%

Terrain Environment 2108 ± 951 41% 34% 3% 4%

Marine Environment 2553 ± 1176 48% 38% 2% 6%

Aerial Environment 1057 ± 483 27% 16% 1% 3%

Hybrid Environment 2004 ± 881 40% 31% 2% 4%

●

●

● ●
0

2000

4000

6000

Ideal Noisy Terrain Marine Aerial Hybrid

Scenario

F
itn

es
s

Figure 4.9: Hybrid environment evolution: tested in multiple environments

In this scenario, 90% of the evolutionary runs generated a controller that is

able to solve the proposed task. 40% evolved the follow teammates search behavior

and 40% evolved the regular dispersed search behavior. 10% evolved a backwards

motion that was able to solve the tasks, and 10% evolved a backwards motion

behavior that was unable to solve the task. On average, a good behavior was

found around generation 500.

We notice the controller was not able to adapt to the noisy environment, and

scored the lowest performance in the aerial environment. Results for the hybrid

controller on each environment reveal to be on pair with the environment-specific

evolution described in section 4.2.1. This will be further analyzed in the following

section.

45

Chapter 4. Applying and Adapting the Controller to Multiple Environments

4.3 Discussion and Comparison

After reviewing the results of each evolution scenario we can extract four main in-

sights: (i) environment specific evolution although strong was not always the best

option for the respective environment: the terrain evolved controller obtained a

lower performance on the terrain environment than the ideal and marine con-

trollers; (ii) contrary to our initial hypothesis, environment noise was not able to

generate a robust controller, as the solution was not able to cope with this type

and magnitude of environment noise; (iii) hybrid evolution gave us results on par

with environment-specific evolved controllers, validating this approach.

We will now turn our attention to the results presented in section 4.2 in an-

other way. Fig. 4.10, shows the results for each of the controllers, grouped by

environment they were tested on.

●

●

●

●

0

2000

4000

6000

Ideal Noisy TerrainAerial MarineHybrid

Ideal Environment

F
itn

es
s

●

●

0

2000

4000

6000

Ideal Noisy TerrainAerial MarineHybrid

Noisy Environment

F
itn

es
s

●
●

●

●
0

2000

4000

6000

Ideal Noisy TerrainAerial MarineHybrid

Terrain Environment

F
itn

es
s

●

●

●

●

●0

2000

4000

6000

Ideal Noisy TerrainAerial MarineHybrid

Marine Environment

F
itn

es
s

● ●

●

●

0

2000

4000

6000

Ideal Noisy TerrainAerial MarineHybrid

Aerial Environment

F
itn

es
s

●
●●

0

2000

4000

6000

Ideal Noisy TerrainAerial MarineHybrid

Hybrid Environment

F
itn

es
s

Figure 4.10: Final comparison: all controllers tested in all scenarios

The terrain environment is the example of a test case where the environment

specific evolution was not the best option. The ideal and marine evolved controllers

had better performance on the terrain environment, with average fitness of 2576

± 1340 and 2191 ± 1261, respectively, while the terrain evolved controller scored

a fitness of 2158 ± 1433. Although the margin is small enough to state that all

46

Chapter 4. Applying and Adapting the Controller to Multiple Environments

three controllers are equally capable of solving the task, it stands out the fact

that the terrain evolved scenario was not the best fit to solve the task in the

environment it was trained in, with the ideal evolved behavior presenting a global

average 15% fitness increase. This seem to happen due to the complexity of the

scenario: the obstacles that increase the difficulty of searching and identifying the

objects to simulate a real-world terrain environment also prevent the evolution

from extracting the global patterns of object identification and catching as well

as it did on the ideal environment. It is noteworthy how a more generic and

ideal scenario was able to generate a behavior more adaptable to a constrained

environment than the solution evolved within it. Also, the characteristics of the

terrain environment conducted the evolution to a behavior in which the swarm

separates in small search groups strategically placed in spaces confined by the

obstacles.

When tested on the noisy environment, all controllers failed to solve the task.

Although the noise magnitude used in these experiments gave us good results in

previous studies [32], it appears to be destructive for this task. On the previ-

ous studies, we used a simple aggregation and formation task with identical noise

applied, with good results to create a more robust behavior. The controller we

present in this work shares many of the same sensors and actuators as the solution

on the previous study (robot sensors, wall sensors, two-wheels actuator), making

this result counterintuitive. On the other hand, the biggest difference between the

two architectures is the shared features sensor. While the search and identification

portion of the behavior seems correct, the categorization was the main variable to

fail in the controller (that caught both enemies and friends), leading us to con-

clude the shared features sensor was the bottleneck that caused the noisy evolved

controller to fail, being the component less prone to noise.

The marine environment is the environment with the biggest discrepancy be-

tween the environment specific evolution performance and the remaining, with the

environment specific controller scoring an average fitness of 3473 ± 1549. Hybrid

evolved controller on this environment scored a lower fitness of 2242 ± 1120. The

ideal, terrain and aerial evolved controller scored the lowest fitness by a big margin:

47

Chapter 4. Applying and Adapting the Controller to Multiple Environments

843 ± 1518, 694 ± 1415 and 768 ± 901, respectively. The robot movement inertia

is the main difference in this environment. This results shows us that although the

adaption to this characteristic is needed (low fitness on the ideal evolution), the

adaption is not hard for the evolution to handle (high fitness in the environment

specific and hybrid controllers). Direct observation of the behavior presents no

visible differences to the remaining solutions.

The aerial environment presented the lowest global fitness values among the

three environments. With no clear performance distinction from the environment

specific solution, we conclude that the evolution was not able generate a controller

that compensates for the wind gusts. Observing the behavior, we notice that when

the wind gusts appear, the robots lose control of the object being identified. Con-

trollers evolved in the aerial environment revealed a tendency to always keep close

together (behavior found on 90% of the evolutionary runs). This tendency was

not observed in the remaining scenarios and represents a specific path the aerial

evolution followed, possibly keeping teammates close to use them as a reference

to acquire spacial awareness when the wind gusts drag the robots out of their

position.

Direct observation of all behaviors revealed three distinct patterns that the

evolution followed: (i) in about 10% of the evolutionary runs, a backwards motion

behavior was evolved, leading that evolutionary run to not be able to bootstrap

the evolution and presenting a global inability to solve the task; (ii) around 15% of

the controllers evolved a follow teammates behavior with object search done in a

group with robots following each other(behavior mostly found on the terrain and

hybrid controllers); (iii) around 35% of controllers evolved a behavior in which the

robots disperse to search and then aggregate to identify and catch.

We noted that on all previous cases, the hybrid controller performance revealed

to be on par with the environment specific results in terms of fitness. To further

analyze these results, the differences between the environment specific controllers

and the hybrid controller are condensed on Table 4.7, for: (i) "enemies identified

48

Chapter 4. Applying and Adapting the Controller to Multiple Environments

ratio", (ii) "enemies caught ratio" and (iii) "friends and unidentified objects caught

ratio".

Table 4.7: Environment specific controllers compared to the hybrid evolved
controller in each scenario

Environment Terrain Environment Marine Environment Aerial Environment

Controller Env. specific Hybrid (± diff) Env. specific Hybrid (± diff) Env. specific Hybrid (± diff)

Enemies identified (%) 41% 41% (0%) 43% 48% (+5%) 35% 27% (-8%)
Enemies caught (%) 32% 34% (+2%) 36% 38% (+2%) 23% 16% (-7%)
Friends caught (%) 1% 3% (+2%) 2% 2% (0%) 2% 1% (-1%)

Unidentified caught (%) 3% 4% (+1%) 5% 6% (+1%) 4% 3% (-1%)

We notice that the differences between the two approaches range from a positive

performance of [0,5] percentage points for the hybrid controller in the terrain and

marine environment and a slight degradation of performance of [1,8] percentage

points in the aerial environment.

We conclude that the hybrid controller reveals to be equivalent to the envi-

ronment specific controllers in the terrain and marine environments, and worse

on the aerial environment. Still, the differences found between these are of small

magnitude. In terms of observable behavior, there are no visible differences as

both solve the task in the same manner. We can state that the performance for

the hybrid controller on the terrain, marine and aerial environments is on pair

with evolution specific controllers, differing only by a small negligible margin with

no clear performance impact.

49

Chapter 5

Conclusions

In this dissertation, we proposed a novel approach for swarm robotics environment

perception. This approach is different from the remaining state of the art for two

main reasons: (i) the controller is obtained using EAs and (ii) the study is focused

on scaling the approach to multiple environments.

We conducted the study in a simulation scenario, starting with the development

of the behavior model in ideal conditions with unidentified objects appearing from

left to right on the arena. We obtained: (i) an "enemy identification rate" of 77%,

an "enemy catch rate" of 73% and a "friends and unidentified objects catch rate"

of 2% and 8% respectively (false positives).

In the next step, we increased the complexity of the problem. The unidentified

objects can now appear from any side of the screen moving to the opposite side,

with the possibility of having two objects on screen at the same time. This con-

troller scored: (i) an "enemy identification rate" of 71%, an "enemy catch rate"

of 64% and a "friends and unidentified objects catch rate" of 2% and 7%, respec-

tively. The evolved behavior consists in performing a dispersed search around the

arena, getting closer to the objects when an enemy feature is detected. When

robots gather around the object, one of them catches it. Attention given to friend

features is lower, so robots didn’t gather around the friend objects most times, nor

caught them.

51

Chapter 5. Conclusions

In chapter 4, we focused our attention in scaling the previously obtained con-

troller to multiple environments. We modeled a simulation environment for: (i) a

terrain environment based on obstacles randomly placed around the environment,

(ii) a marine environment with constant currents and inertia in the robots’ move-

ments and (iii) a aerial environment with a constant current and wind gusts. Also,

we selected 2 main scenarios that are known to evolve more robust behaviors: (i)

noisy evolution and (ii) a hybrid evolution in the multiple scenarios. These were

compared to the ideal evolution scenario.

When observing the evolved behaviors, two main categories can be extracted:

in the first, the robots evolved a behavior in which the team performs a dispersed

search around the arena and then aggregate around the object to proceed with

the identification; in the second, the robots follow each other in circular paths

around the environment once again aggregating towards the object to identify.

The identification process followed very similar behavior in all experiments: cir-

cumnavigating the object while front-facing it until the identification is complete.

Specialization was also observed on the environment-specific evolutions: in the

terrain evolved controller the swarm had a tendency to separate in groups and

search inside the areas confined by the obstacles.

The noisy evolution not only failed to evolve a more robust and scalable so-

lution, but failed to solve the task at all, as the noise magnitude revealed to be

destructive for this task. While search and identification appeared similar and

correct, identification failed as the swarm caught all objects instead of only en-

emies. Behavior observed here appeared less smooth and more quantized: when

a controller is evolved in a noisy environment, the evolution follows a path that

benefits the controllers that are more robust, more difficult to severally impact

performance with slight differences in the input values. This explains the quan-

tized behavior observed. Globally, noisy evolved controllers tend to have clear

and fixed values for its outputs (in this case the wheels), while non-noisy evolved

solutions converge to more smooth curves of motion of the output variables.

52

References

The global objective of this work was to test and compare several ways of devel-

oping a controller capable of collectively identifying a set of objects and act upon

multiple types of environments based on a categorization of the objects identified.

This objective was successfully completed as we demonstrated how EAs could syn-

thesize a controller capable of solving this task. Additionally, we demonstrated

the flexibility of our machine learning approach to generate a controller that could

achieve good results in multiple environments by evolving a solution globally op-

timized for them: the hybrid solution. Although environment-specific controllers

globally outperformed the hybrid controller in the respective environment, the dif-

ference between the two are small enough to state that both controllers are equally

capable of solving our task, with the advantage of the hybrid controller presenting

a more global solution.

Of all environments, the biggest difficulty for the controller appeared to be

on the aerial environment, specifically the the wind gusts, that the controller had

difficulty in compensating. Future work on this area could reside in optimizing

this controller for better results in the different environments. For example, giving

the controller access to a sensor that detects wind gusts could help the robot

compensate them and boost the performance on the aerial environment.

53

Bibliography

[1] P. M. Fitzpatrick, “Perception and perspective in robotics,” Proceedings of

the 25th Annual Conference of the Cognitive Science Society, 2003.

[2] E. Mascalzoni and L. Regolin, “Animal visual perception,” Wiley Interdisci-

plinary Reviews: Cognitive Science, vol. 2, no. 1, pp. 106–116, 2011.

[3] M. A. Lewis, A. H. Fagg, and A. Solidum, “Genetic Programming Approach

to the Construction of a Neural Network for Control of a Walking Robot,” In

IEEE International Conference on Robotics and Automation, pp. 2618–2623,

1992.

[4] D. Cliff, P. Husbands, and I. Harvey, “Evolving visually guided robots,” Pro-

ceedings of the Second International Conference on Simulation of Adaptive

Behavior (SAB), no. July 1992, pp. 374–383, 1993.

[5] K. Jim, C. L. Giles, and B. G. Horne, “Effects of Noise on Convergence

and Generalization in Recurrent Networks,” Advances in Neural Information

Processing Systems (NIPS) 7, p. 649, 1995.

[6] L. Merino, F. Caballero, J. R. Martínez-de Dios, J. Ferruz, and A. Ollero, “A

cooperative perception system for multiple UAVs: Application to automatic

detection of forest fires,” Journal of Field Robotics, vol. 23, no. 3-4, pp. 165–

184, 2006.

[7] M. T. J. Spaan, “Cooperative Active Perception using POMDPs,” October,

pp. 4800–4805, 2010.

55

References

[8] M. T. J. Spaan, T. S. Veiga, and P. U. Lima, “Active cooperative perception

in network robot systems using POMDPs,” IEEE/RSJ 2010 International

Conference on Intelligent Robots and Systems, IROS 2010 - Conference Pro-

ceedings, pp. 4800–4805, 2010.

[9] Q. V. Le, A. Saxena, and A. Y. Ng, “Active Perception : Interactive Manip-

ulation for Improving Object Detection,” 2010.

[10] M. T. J. Spaan, T. S. Veiga, and P. U. Lima, “Decision-theoretic planning un-

der uncertainty with information rewards for active cooperative perception,”

Autonomous Agents and Multi-Agent Systems, vol. 29, no. 6, pp. 1157–1185,

2014.

[11] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent

in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4,

pp. 115–133, 1943.

[12] S. M. Prabhu and D. P. Garg, “Artificial Neural Network Based Robot Con-

trol: An Overview,” Journal of Intelligent and Robotic Systems, vol. 15,

no. 1993, pp. 333–365, 1996.

[13] J. Chen and S. Wermter, “Continuous Time Recurrent Neural Networks for

Grammatical Induction,” International Conference on Artificial Neural Net-

works,1998, pp. 381–386, 1998.

[14] Stefano Nl, “Institute of Psychology CNR-Rome,” Population (English Edi-

tion), vol. 1997, no. May, pp. 1–27, 1994.

[15] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the Reality Gab: The Use

of Simulation in Evolutionary Robotics,” Lecture Notes in Computer Science,

vol. 929, pp. 704–720, 1995.

[16] D. Floreano and J. Urzelai, “Evolutionary Robots: The Next Generation,”

The 7th International Symposium on Evolutionary Robotics (ER2000): From

Intelligent Robots to Artificial Life, pp. 231–266, 2000.

56

References

[17] C. Hartland and N. Bredèche, “Evolutionary robotics, anticipation and the

reality gap,” 2006 IEEE International Conference on Robotics and Biomimet-

ics, ROBIO 2006, pp. 1640–1645, 2006.

[18] M. Eaton, “Evolutionary humanoid robotics: past, present and future,” Lec-

ture Notes in Computer Science, vol. 4850, p. 42, 2007.

[19] M. Duarte, S. Oliveira, and A. L. Christensen, “Hierarchical evolution of

robotic controllers for complex tasks,” 2012 IEEE International Conference

on Development and Learning and Epigenetic Robotics, ICDL 2012, no. June,

2012.

[20] A. Iscen, “Learning Tensegrity Locomotion Using Open-Loop Control Signals

and Coevolutionary Algorithms Abstract,” Artificial Life, vol. 19, no. 3/4,

pp. 119–140, 2013.

[21] A. Ahmad, T. Nascimento, A. G. S. Conceicao, A. P. Moreira, and P. Lima,

“Perception-driven multi-robot formation control,” Proceedings - IEEE Inter-

national Conference on Robotics and Automation, pp. 1851–1856, 2013.

[22] A. Rauch, S. Maier, F. Klanner, and K. Dietmayer, “Inter-vehicle object asso-

ciation for cooperative perception systems,” IEEE Conference on Intelligent

Transportation Systems, Proceedings, ITSC, no. Itsc, pp. 893–898, 2013.

[23] S.-W. Kim, B. Qin, Z. J. Chong, X. Shen, W. Liu, M. H. Ang, E. Frazzoli,

and D. Rus, “Multivehicle Cooperative Driving Using Cooperative Perception:

Design and Experimental Validation,” 2015.

[24] T. Rodrigues, M. Duarte, M. Figueiró, V. Costa, S. M. Oliveira, and A. L.

Christensen, “Overcoming limited onboard sensing in swarm robotics through

local communication,” Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-

matics), vol. 9420, pp. 201–223, 2015.

[25] A. Dias, J. Capitan, L. Merino, J. Almeida, P. Lima, and E. Silva, “De-

centralized target tracking based on multi-robot cooperative triangulation,”

57

References

2015 IEEE International Conference on Robotics and Automation (ICRA),

pp. 3449–3455, 2015.

[26] B. Burchfiel and G. Konidaris, “Generalized 3D Object Representation using

Bayesian Eigenobjects,”

[27] M. Duarte, F. Silva, T. Rodrigues, S. M. Oliveira, and A. L. Christensen,

“{JBotEvolver}: A versatile simulation platform for evolutionary robotics,”

Proceedings of the International Conference on the Synthesis & Simulation of

Living Systems (ALIFE), pp. 210–211, 2014.

[28] M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M. Oliveira,

and A. L. Christensen, “Evolution of collective behaviors for a real swarm

of aquatic surface robots,” PLoS ONE, vol. 11, no. 3, pp. 1–25, 2016.

[29] J. Pflimlin, P. Soueres, and T. Hamel, “Hovering flight stabilization in wind

gusts for ducted fan UAV,” 2004 43rd IEEE Conference on Decision and Con-

trol (CDC) (IEEE Cat. No.04CH37601), vol. 4, no. January 2005, pp. 3491–

3496, 2004.

[30] T. Cheviron, F. Plestan, and A. Chriette, “A robust guidance and control

scheme of an autonomous scale helicopter in presence of wind gusts,” Inter-

national Journal of Control, vol. 82, no. 12, pp. 2206–2220, 2009.

[31] F. Leonard, A. Martini, and G. Abba, “Robust nonlinear controls of model-

scale helicopters under lateral and vertical wind gusts,” IEEE Transactions

on Control Systems Technology, vol. 20, no. 1, pp. 154–163, 2012.

[32] P. Romano, L. Nunes, A. L. Christensen, M. Duarte, and S. M. Oliveira,

“Genome Variations,” in Robot 2015: Second Iberian Robotics Conference:

Advances in Robotics, Volume 1 (L. P. Reis, A. P. Moreira, P. U. Lima,

L. Montano, and V. Muñoz-Martinez, eds.), pp. 309–319, Cham: Springer

International Publishing, 2016.

58

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	List of Algorithms
	Abbreviations
	1 Introduction
	1.1 Objectives
	1.2 Research Challenges and Contribution
	1.2.1 Other Scientific Contribution

	1.3 Research Method
	1.4 Structure of the Dissertation

	2 State of the Art
	2.1 Evolutionary Robotics
	2.1.1 Evolutionary Computation
	2.1.2 Artificial Neural Networks (ANN)
	2.1.3 Applications in Robotics

	2.2 Cooperative Active Perception

	3 Cooperative Active Perception Control System
	3.1 Methodology
	3.2 Experimental Setup
	3.2.1 Evolutionary Process

	3.3 Experiments and Results
	3.3.1 Object Identification
	3.3.2 Object Identification and Catching

	3.4 Final Controller
	3.4.1 Controller Architecture
	3.4.2 Results and Discussion

	3.5 Generalizing the Approach

	4 Applying and Adapting the Controller to Multiple Environments
	4.1 Modeling the Environments
	4.1.1 Terrain Environment
	4.1.2 Marine Environment
	4.1.3 Aerial Environment

	4.2 Evolving and testing the solution on different setups
	4.2.1 Environment-specific Evolution and Results
	4.2.1.1 Terrain Evolution
	4.2.1.2 Marine Evolution
	4.2.1.3 Aerial Evolution

	4.2.2 Ideal Evolution applied to Multiple Environments
	4.2.3 Noisy Evolution and Results
	4.2.4 Hybrid Evolution and Results

	4.3 Discussion and Comparison

	5 Conclusions

