Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/16894
Registo completo
Campo DCValorIdioma
dc.contributor.authorAntunes, A. L.-
dc.contributor.authorCardoso, E.-
dc.contributor.authorBarateiro, J.-
dc.date.accessioned2018-12-10T15:26:59Z-
dc.date.available2018-12-10T15:26:59Z-
dc.date.issued2018-
dc.identifier.urihttps://ciencia.iscte-iul.pt/id/ci-pub-49162-
dc.identifier.urihttp://hdl.handle.net/10071/16894-
dc.description.abstractThis paper discusses the problem of outlier detection in datasets generated by sensors installed in large civil engineering structures. Since outlier detection can be implemented after the acquisition process, it is fully independent of particular acquisition processes as well as it scales to new or updated sensors. It shows a method of using machine learning techniques to implement an automatic outlier detection procedure, demonstrating and evaluating the results in a real environment, following the Design Science Research Methodology. The proposed approach makes use of Manual Acquisition System measurements and combine them with a clustering algorithm (DBSCAN) and baseline methods (Multiple Linear Regression and thresholds based on standard deviation) to create a method that is able to identify and remove most of the outliers in the datasets used for demonstration and evaluation. This automatic procedure improves data quality having a direct impact on the decision processes with regard to structural safety.eng
dc.language.isoeng-
dc.rightsopenAccess-
dc.subjectOutlier detectioneng
dc.subjectSensor dataeng
dc.subjectMachine learningeng
dc.subjectData miningeng
dc.titleAdding value to sensor data of civil engineering structures: automatic outlier detectioneng
dc.typeconferenceObject-
dc.event.typeWorkshoppt
dc.event.locationZakynthoseng
dc.event.date2018-
dc.peerreviewedyes-
dc.journal1st Workshop on Machine Learning, Intelligent Systems and Statistical Analysis for Pattern Recognition in Real-life Scenarios, ML-ISAPR 2018-
degois.publication.locationZakynthoseng
degois.publication.titleAdding value to sensor data of civil engineering structures: automatic outlier detectioneng
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
Aparece nas coleções:CTI-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
iisa2018_final_paper_65.pdfPós-print1,18 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.