Skip navigation
User training | Reference and search service

Library catalog

Content aggregators
Please use this identifier to cite or link to this item:

Title: Discovering trends in brand interest through topic models
Authors: Lopes-Teixeira, D.
Batista, F.
Ribeiro, R.
Keywords: Topic modeling
Topics evolution
Brand interest
Issue Date: 2018
Publisher: SciTePress
Abstract: Topic Modeling is a well-known unsupervised learning technique used when dealing with text data. It is used to discover latent patterns, called topics, in a collection of documents (corpus). This technique provides a convenient way to retrieve information from unclassified and unstructured text. Topic Modeling tasks have been performed for tracking events/topics/trends in different domains such as academic, public health, marketing, news, and so on. In this paper, we propose a framework for extracting topics from a large dataset of short messages, for brand interest tracking purposes. The framework consists training LDA topic models for each brand using time intervals, and then applying the model on aggregated documents. Additionally, we present a set of preprocessing tasks that helped to improve the topic models and the corresponding outputs. The experiments demonstrate that topic modeling can successfully track people’s discussions on Social Networks even in massive datasets, and ca pture those topics spiked by real-life events.
Peer reviewed: yes
DOI: 10.5220/0006936202450252
ISBN: 978-989-758-330-8
Appears in Collections:CTI-CRI - Comunicações a conferências internacionais

Files in This Item:
File Description SizeFormat 
topic-modeling.pdfPós-print362.69 kBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.