Skip navigation
User training | Reference and search service

Library catalog

EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/16347
acessibilidade
Title: Design of an artificial neural network and feature extraction to identify arrhythmias from ECG
Authors: Roza, V. C. C.
de Almeida, A. M.
Postolache, O. A.
Keywords: Electrocardiography
Feature extraction
Training
Artificial neural networks
Neurons
Heart rate
Diseases
Issue Date: 2017
Publisher: IEEE
Abstract: This paper presents a design of an artificial neural network (ANN) and feature extraction methods to identify two types of arrhythmias in datasets obtained through electrocardiography (ECG) signals, namely arrhythmia dataset (AD) and supraventricular arrhythmia dataset (SAD). No special ANN toolkit was used; instead, each neuron and necessary calculus were modeled and individually programmed. Thus, four temporal-based features are used: heart rate (HR), R-peaks root mean square (R-RMS), RR-peaks variance (RR-VAR), and QSR-complex standard deviation (QSR-SD). The network architecture presents four neurons in the input layer, eight in hidden layer and an output layer with two neurons. The proposed classification method uses the MIT-BIH Dataset (Massachusetts Institute of Technology-Beth Israel Hospital) for training, validation and execution or test phases. Preliminary results show the high efficiency of the proposed ANN design and its classification method, reaching accuracies between 98.76% and 98.91%, when in the identification of NSRD and arrhythmic ECG; and accuracies of 86.37% (AD) and 76.35% (SAD), when analyzing only classifications between both arrhythmias.
Peer reviewed: yes
URI: https://ciencia.iscte-iul.pt/id/ci-pub-40548
http://hdl.handle.net/10071/16347
DOI: 10.1109/MeMeA.2017.7985908
ISBN: 978-1-5090-2984-6
Appears in Collections:IT-CRI - Comunicações a conferências internacionais

Files in This Item:
acessibilidade
File Description SizeFormat 
MEMEA_2017.pdfPós-print881.2 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.