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Abstract—This paper presents a design of an artificial neural 

network (ANN) and feature extraction methods to identify two 

types of arrhythmias in datasets obtained through 

electrocardiography (ECG) signals, namely arrhythmia dataset 

(AD) and supraventricular arrhythmia dataset (SAD). No special 

ANN toolkit was used; instead, each neuron and necessary calculus 

were modeled and individually programmed. Thus, four 

temporal-based features are used: heart rate (HR), R-peaks root 

mean square (R-RMS), RR-peaks variance (RR-VAR), and QSR-

complex standard deviation (QSR-SD). The network architecture 

presents four neurons in the input layer, eight in hidden layer and 

an output layer with two neurons. The proposed classification 

method uses the MIT–BIH Dataset (Massachusetts Institute of 

Technology–Beth Israel Hospital) for training, validation and 

execution or test phases. Preliminary results show the high 

efficiency of the proposed ANN design and its classification 

method, reaching accuracies between 98.76% and 98.91%, when 

in the identification of NSRD and arrhythmic ECG; and 

accuracies of 86.37% (AD) and 76.35% (SAD), when analyzing 

only classifications between both arrhythmias.   

Keywords—arrhythmia identification; pattern recognition; 

signal analysis; artificial neural network. 

I.  INTRODUCTION 

Electrocardiography (ECG) is an important non-invasive 
technique used in medicine to observe the heart variation and 
abnormalities over a period of time. Continuous and typical 
ECG signal consists of P-waves, QRS-complexes and T-waves 
[1], and provides fundamental information about the electrical 
activity of the heart. Abnormalities in this electrical activity 
may represent heart diseases defined by the absence of any 
structural cardiac defects and are responsible for a large number 
of sudden, unexpected deaths, including those of young 
individuals [2]. Thus, several diseases may be detected through 
ECG analysis such as, atrial fibrillation (AF) [3,4], long QT 
syndrome, Brugada syndrome, catecholaminergic polymorphic 
ventricular tachycardia and the short QT syndrome [2] and 
arrhythmia [5]. Some of these diseases cannot be visually 
distinguished easily by a medical specialist due to its similar 
appearance with other signals [6]. However, a deep 
computational analysis may be used to detect small differences 
and possible diseases. To allow for  such automatic  detection, 
several features may be extracted from ECG signals such as, 
heart rate variability (HRV) triangular index [7],  
morphological features [8] through the temporal-domain 
analysis [7,9] and frequency-domain [1,7,10], and wavelet 
transform coefficients [11,12,13,14]. Furthermore, automatic 
methods to correctively identify diseases or patterns from these 

signals may be reached through statistical Markov models [15], 
artificial neural networks (ANN) [1,3,6,16], linear discriminant 
analysis [17], and support vector machine (SVM) [18]. 

Arrhythmia is defined as a general term for an irregularity 

or rapidity of the heartbeat or an abnormal heart rhythm [4]. 

Arrhythmias can initiate or exacerbate acute systolic heart 

failure in patients with pre-existing heart disease [19]. 

Therefore, studies in arrhythmias characteristics, definition and 

consequences are explored in several works.  

Leren et al., investigated early markers of arrhythmic events 

and improved risk stratification in early arrhythmogenic right 

ventricular cardiomyopathy, performing resting and signal 

averaged ECG [5]. Farwell et al., presents a paper review about 

the current clinical and molecular understanding of the 

electrical diseases of the heart associated with sudden cardiac 

death [2]. Kohno et al., presents a state-of-the-art about the 

relation between atrial arrhythmias and pacing-induced 

rhythms disorders, inside the context of cardiac implanted 

devices [20]. Gopinathannair et al., exposed the arrhythmia-

induced cardiomyopathies (AIC) showing its definition, 

potential reversible condition and aspects [19].  

In the arrhythmia identification context, other works present 

classifications and methods used. Caswell et al. used new 

techniques to analyze arrhythmia through morphology of the 

ECG waveform with success in correctly detecting fatal 

arrhythmias through waveform correlation analysis of 

intracardiac electrograms. They also defined a two-dimensional 

feature space with linear decision boundaries using a least 

squares minimum distance classifier [21]. Povinelli et al., 

proposed a novel, nonlinear, phase space based method to 

quickly and accurately identify life-threatening arrhythmias, 

determined for six different ECG signal lengths [22]. Artis et 

al. used ANNs to identify AF, using the MIT-BIH Dataset, with 

each AF and non-AF recordings with 15-min [3]. Shadmand 

and Mashoufi, developed a new personalized ECG signal 

classification using ANN variant named block-based neural 

network (BBNN) and then classify ECG heartbeats, possibly 

also detecting arrhythmia patterns [6]. Lin, proposed a method 

for heartbeat identification from ECG using ANN and grey 

relational analysis (GRA) to classify cardiac arrhythmias 

patterns [1].   

This paper presents a new approach to identify two types of 

arrhythmias patterns from ECG signals: the arrhythmia dataset 

(AD) and the supraventricular arrhythmia dataset (SAD), 

Moreover, are used four temporal-based features: heart rate 

(HR), R-peaks Root Mean Square (R-RMS), RR-peaks 



variance (RR-VAR), and QSR-complex Standard Deviation 

(QSR-SD).  

The MIT-BIH Arrhythmia Dataset is used as reference to 

training, validation and test or execution phases for the ANN.  

II. DATASET 

 For processing (features extraction) and classify arrhythmia 
patterns from ECG this paper uses MIT–BIH (Massachusetts 
Institute of Technology–Beth Israel Hospital) Dataset. It 
provides the ECG signals and is used during training, validation, 
and execution of the ANN classifier. The ECG classes/databases 
considered are: 

• Normal sinus rhythm database (NSRD); 

• Arrhythmia database (AD); 

• Supraventricular Arrhythmia database (SAD).  
 

This dataset uses time-date in seconds, grid interval x-axis of 
0.2 seconds, grid interval y-axis of 0.5 mV, and standard data 
format. It consists of 240 NSRD instances, 432 AD instances, 
and 252 SAD instances.  

Table I presents each class used during training, validation, 
and execution phases. 

TABLE I.  DATASET CLASSES FOR EACH ANN PHASE. 

MIT-BIH Dataset 

Classes/Phases Training Validation Execution 

Normal (NSRD) 162 54 24 

Arrhythmias (AD) 207 69 156 

Suprav. Arrhyt. (SAD) 117 39 96 

Total instances 486 162 276 

III. METHODOLOGY 

In the training, validation and execution or test phases, 67 
ECG signals (large-signals) with one hour duration from MIT-
BIH Dataset are used. Each large-signal is divided in 12 short-
signals with duration �� (5-min), number of R-peaks ��, and 

signal length ��, resulting in 648 (54 � 12) short-signals, where 

486 (75%) are used in the training phase and 162 (25%) for the 
validation phase.  

Furthermore, according to the literature, 5-min recording for 
each signal is an appropriated option for a minimal and reliable 
ECG analysis [7], although other researchers use 15-min 
recording [3] or more.   

A. Signal Processing 

ECG signals include noise. Then, signal processing (or pre-
processing) was developed to enables the ECG signals to be 
used in the ANN inputs.  

This processing includes signal samplings, low pass 
Butterworth filter, data smoothing Savitzky–Golay filter, FFT 
transform and  baseline wander.  

This steps were applied to remove noises, give support in 
the RR-peaks identification and to maintain the baseline signals 
(i.e. same signal reference) during the signal processing 

executed before the feature extraction process, as shown in    
Fig. 1. 

 

 
Fig. 1. Steps of signal processing (in gray) applied in the ECG dataset signals 
to derive the ANN inputs.  

1) Filtering and Frequency-domain 

Once the dataset is chosen, the filtering and noise reduction 

are the next steps of signal processing to guarantee higher 

accuracy in the feature extraction phase. After the already 

described signal segmentation to allow for the short-signal 

descriptions, frequency is investigated. Power spectrum 

variations are observed between 0 and 20 Hz in frequency 

domain similarly to previous tests found in the literature [1].  

Fast Fourier Transform (FFT) is used to determine that 

frequency spectrum with signal sampling frequency of 500 Hz 

and average of 54,166 samples to each short-signal.  
The QSR-complex is a very important part from ECG and it 

varies for both normal and abnormal rhythms. Thus, this paper 
also uses this identification as a feature to the ANN inputs 
vector. 

B. Features Extraction 

Feature extraction is applied in training, validation and 
execution phases. Thus, from each short-signal, the signal 
processing returns four temporal-based features:  

• Beats per minutes or heart rate (HR); 

• R-peaks root mean square (R-RMS);  

• QSR-complex standard deviation (QSR-SD); 

• RR-peaks variance (RR-VAR).  

1) Time-domain Features 

 The temporal-based (time-domain) feature extraction starts 
with R-peaks detection algorithm to obtain the HR.  Equation 1 
represents each short-signal in minutes, where ∆����� � ���� � ���; �� and ����	represent consecutives R-peaks 

positions inside the set  ℘ � ���, ��, . . , ����  of all R-peaks 

positions from a short-signal. The correspondent R-peaks or 
QSR-complex values are represented by the set                       � � ����	� 	!��, ���	� 	!��, . . , ���� 	� 	!���". 

�� � #$% ∑ ∆�������'��(�   (1) 

 Once the R-peaks are detected, the HR feature is calculated 
using Eq. 2, where  �� is the reference time for the short-signal, 



��)  represents the total amount of R-peaks on minute �, �* is 

the final minute from the short-signal, and ∆�′���� and	�,- , 

represent ∆����� and �, in minutes, respectively. 

. � ∑ ∑ �,-��),(�/0/(�∑ ∆�����-��'��(� � 1�� 11�,-��)
,(�

/0
/(�  (2) 

The R-RMS feature is a generalized mean (Eq. 3) based in 

the R-peaks values set �, and the signal length �� starting from 

the first to the last R-peak from 2,. 

 34 � 5 �%� ∑ |��,- �|��,(�   (3) 

The QSR-SD feature uses R-peaks as a reference to find 
QRS-complexes thus, it is based in R-peaks values from set � 
(Eq. 4). Furthermore, the standard deviation for each QSR-

complex from the set℘7�8 � �!�, !�, . . , !���. 4�9:;< � 5 �%�'�∑ |�!,- � � =|���,(�   

 

(4) 

Finally, the RR-VAR feature (>�) also uses R-peaks 

positions (Eq. 5), where = represents the mean of each short-

signal 2,.  ?@ � >� � �%�'�∑ |�,- � =|�%�,(�   

 

(5) 

2) Feature-Classification Memory  

 All extracted features A (represented by the set B ��A�C�, A�C�, ADC�, AEC��) and classification results	FC�, are 
co-related in the set with size �G (number of memory’s 
instances) that is, 

where		H represents the classifier’s memory, i.e., all data 

learned during the training and validation phases. Therefore, it 

includes the stored features AI and its correspondent stored 

classification FC� at iterationC. 

C. Artificial Neural Network 

Artificial neural networks are one of most powerful tools for 

diagnosing diseases in an automatic manner [6]. Thus, an ANN 

architecture is proposed in this work, with four input neurons, 

eight hidden neurons (based in two hidden layers) and two 

output neurons (i.e. 4 � 4 � 4 � 2 network), as shown Fig. 2. 

 
 

 

 

                      

Fig. 2. ANN architecture. Input layer (i), hidden layers (j) and output layer (k). 

Each input is represented by �J�, J�, JD, JE�, and during 

the ANN training and validation phases, these inputs are 

defined by, 

K/8LI, � MN
NO J��� J��� JD�� JE��J��� J��� JD�� JE��⋮J�EQ#� ⋮J�EQ#� ⋮ ⋮JDEQ#� JEEQ#�RS

ST (7) 

KULVIW � MN
NO J��� J��� JD�� JE��J��� J��� JD�� JE��⋮J��#�� ⋮J��#�� ⋮ ⋮JD�#�� JE�#��RS

ST (8) 

D. Classification 

Classification uses four features and memory (H�	resource 

to accurately identify arrhythmia patterns. Beyond ANN, K-

nearest neighbors (K-NN), is also used as a memory seeker at 

execution phase. Thus, arrhythmia identification/classification 

is based in three phases, such as: 

• Training: uses 75% from dataset to train the network to 

have best weights as possible; 

• Validation: uses 25% from dataset to validate the 

training results; 

• Execution or Test: uses new data to indeed identify 

arrhythmias patterns from ECG signals, comparing 

previous classifications from the memory, with new 

data. 

 

Our pattern identification uses the ANN multilayer 

perceptron (MLP-ANN) with backpropagation algorithm. 

Furthermore, no special ANN toolkit was used; instead, each 

neuron and necessary calculus were modeled and individually 

programmed. Therefore, the configuration variables i.e., 

momentum (X) and learning-rate (Y), are adjusted during the 

training phase using the training set (Eq. 9): Z � �JC�, 9C��|,(��  (9) 

where Z includes the stimulus JC� applied to input layer to 

reach 9C�, that represents the desired output from network at 

iteration C. 

  The network weights ([∗) and biases (]∗) are also included 

in output nodes and are defined as bellow.  

[∗ � ^ [��� [��� [�D�[��� [��� [�D�⋮[�#�� [�#�� J�#D�_ (10) 

]∗ � ^]�� ]�� ]�D]�� ]�� ]�D]D�]E� ]D�]E� ]DD]ED_ 
 

 
(11) 

The ANN uses the induced local field (forward 
computation), as represented by Eq. 12, where JI goes to input 
to neuron (node) ` and [aI 	9enotes a connection from neuron ` 
to b. 

H � �BAIC�|I(�c �, FC�� |,(��d  (6) 



?aC� � ∑ [aIC�JIC�, ` e 1�I(�   (12) 

The network also uses the sigmoidal activation function 

given by Eq. 13. fa g?aC�h � ���ij�	g'LUk,�h , @ l 0  (13) 

Furthermore, the error signal or instantaneous error 

produced by output layer of each neuron j is defined by Eq. 14, naC� � 9aC� � opC� (14) 

where 9aC� represents the jth element of 9C� and opC� the 

kth instantaneous output. Furthermore, the opC�	and the 

instantaneous error energy (q) of each neuron j (Eq. 15) are 

both considered to reach best network accuracy along epochs 

(iterations) [23, 24]. 

The local gradient applied to neuron k located in the output 

layer, is described by Eq. 16, 

and the ANN weights adjustments (backward computation) 

applied to each output neuron, is defined by delta-rule (Eq. 17) 

[23, 24],  

where the momentum X (r0; 1t) is used to avoid instabilities 

while increasing the learning-rate Y (r0; 1t). 
1) Network Output 

The network returns two outputs �o�, o�� in binary format, 

giving 2�	different classification outputs as shown in Eq. 18.  

u � ^ o��� o���o��� o���⋮o�#EQ� ⋮o�#EQ�_ � v11 01⋮ ⋮0 1w 
 

(18) 

      The output patterns are: “Not defined” or not classified, 

when the classifier does not match the output either as normal 

or arrhythmic pattern; “SAD” when matching supraventricular 

arrhythmia; “NSRD” when matching to normal cardiac rhythm 

pattern; and “AD” when matching to arrhythmic pattern, as 

demonstrated bellow. 

2) Execution or Test Phase 

This phase uses, mainly, new instances from the dataset, 

according Table I from Section II (Dataset). 
To compare the extracted feature from each new short-

signal, the K-NN algorithm is used to seek the best classification 

already stored in memory (H) during the training and validation 
phases. Thus, this algorithm uses Euclidian distance 
measurement to find the smallest distance between the             
stored features in B, and the new feature vector                          B∗ � �A�∗C�, A�∗C�, AD∗C�, AE∗C�, � that can be extracted from        
MIT-BIH Dataset, as described in Eq. 20, 

ℓC� � 	y∑ H�B∗AI∗�� � BAIC����EI(�   (20) 

where AI∗ is constant. Finally, the iteration C∗, representing the 
smallest ℓC�, determines the classification result in the 
execution phase, i.e., FC∗�  represents the final classification 
given by the presented ANN.  

Figure 3 shows a summary of all steps for the developed 
approach. 

 
 

 

 

 

 

 

 

 

 
Fig. 3. General view of all processes of arrhythmia classification since the ECG 

recordings dataset until final classification FC∗�. 
IV. RESULTS 

This work presents a design of an ANN classifier and 

features extraction methods to identify arrhythmia patterns. 

Hereinafter, uses the previously described MIT-BIH Dataset 

(Section II). To test the accuracy of the developed ANN, four 

steps are used: training, validation and two different 

executions.  

In the execution phase, two different perspectives are used: 

• Using the same set of features from the validation phase 

(25% from dataset),  K-NN is applied to set of features 

from training, and classifications stored in memory H; 

• Using a new set of unused examples from the dataset, and 

K-NN applied to set of features from training, and 

classifications in H. 

A. Training and Validation Phases 

During the training and validation phases were used 648 

instances (i.e. 100% from considered dataset).  

Figure 4 presents the four feature values along the input 

layer from the network during training phase. Note that in this 

case is applied 486 instances of the dataset (i.e. 75% of 648 

instances).  

Each plotted vertical segment represents different inputs 

between the NSRD, AD and SAD class instances. Furthermore, 

qaC� � 12 na�C� (15) 

zpC� � npC�op1 � op� (16) 

∆[paC� � X∆[paC � 1� { YzpC�opC� (17) 

v0 00 111 01w � ^"���	9nAbCn9""2}~""�2�~""}~" _ (19) 



the features QSR-SD and RR-VAR were multiplied by 100 and 

10,000 times respectively, due its small values. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Features values for the  ANN input during training phase. 
 

Figure 5 shows the variance (σ�) feature applied to ANN 

during training phase. Note that AD and SAD segments present 

more spikes when compared to NSRD segment. It occurs 

because in cases of arrhythmia, the R-R peaks distances 

(intervals) become more irregular.  
 

Fig. 5. Input feature RR-VAR based in R-peaks variance (>�) applied during 

training phase. 

The outputs from each neuron are presented in Fig. 6. Note 

that, during training and validation phases, the ANN outputs 

return results very similar to the desired output.  

 

Fig. 6. ANN outputs during the training and validation phases using  X � 0.2, Y � 0.40, @ � 2.  
 

All errors produced by ANN neurons, such as squared errors 

and sum of errors, are shown in Fig. 7.  

Note that, close to 400 iterations (epochs) the output errors 

are normalized, stabilizing the network accuracy to returns 

correctly the arrhythmias classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 7. Example of the ANN output errors during the training and validation 

phases using  X � 1, Y � 0.55, @ � 2. 

 

Figure 8 presents final clustering reached by classifier, 

showing the relation between HR (horizontal axis) and R-RMS 

(vertical axis) features. Note the complex non-linearity 

classification reached during training and validation phases for 

all 684 instances (486 for training and 162 for validation) from 

MIT-BIH Dataset. 

Fig. 8. Correct identification of normal ECGs and arrhythmias, during training 

and validation phases, using  X � 1, Y � 0.55, @ � 2. 

B. Execution Phase using Features from Validation 

In this execution phase of arrhythmia identification, the 

algorithm shows high accuracy (98.76%) when using the 

validation features (i.e. 25% of 648) from MIT-BIH Dataset.  

Table II presents the confusion matrix for the classification 

results during execution phase after the K-NN algorithm using 

the feature-classification memory (H) from training. Thus, 

considering the classification between a normal ECG (NSRD) 

and arrhythmic ECG (AD+SAD), the classification reached an 

accuracy of 98.76% (2 errors over 162 instances). Furthermore, 

considering only Normal (NSRD), Arrhythmia (AD) and 

Supraventricular Arrhythmia (SAD), the accuracies are of 

96.26% (2 mistakes between arrhythmias), 97.10% (2 mistakes 

between arrhythmias) and 92.30% (3 mistakes between 

arrhythmias), respectively.  

TABLE II.  CONFUSION MATRIX FOR TWO ARRHYTHMIA IDENTIFICATION. 

Actual/Predicted NSRD AD SAD Total 

NSRD 52 (96.29%) 0 2 54 

AD 0 67 (97.10%) 2 69 

SAD 0 3 36 (92.30%) 39 



C. Execution Phase with New Features-Set 

In this execution or test phase of arrhythmia identification, 

the algorithm stills presents high accuracy of 98.91% even 

when using a new set of examples.  

Table III presents the confusion matrix for the classification 

results. Therefore, considering the classification between 

NSRD and all arrhythmic ECGs (AD+SAD), the accuracy 

reached 98.91% (3 errors over 276 instances). Furthermore, 

considering NSRD, AD and SAD, the accuracies reached were 

100.00% (no errors), 75.64% (3 errors and 35 mistakes between 

arrhythmias) and 60.41% (38 mistakes between arrhythmias), 

respectively.  

TABLE III.  CONFUSION MATRIX FOR TWO ARRHYTHMIA IDENTIFICATION. 

Actual/Predicted NSRD AD SAD Total 

NSRD 24 (100.0%) 0 0 24 

AD 3 118 (75.64%) 35 156 

SAD 0 38 58 (60.41%) 96 

V. CONCLUSIONS AND FUTURE WORKS 

This paper presents a design of an ANN to identify two 

different arrhythmias patterns from ECG. Also is presented an 

ANN with support of K-NN method and the MIT-BIH Dataset. 

Finally, the effectiveness for the accurate identification of 

arrhythmias patterns is established.  

 Thus, the designed and implemented  ANN  model reach 

accuracies between 98.76% and 98.91%, identifying NSRD and 

arrhythmias (AD+SAD) patterns; and reach accuracies with 

mean values of 86.37% (AD) and 76.35% (SAD), when only 

arrhythmias are analyzed, i.e. when there are classification 

mistakes between both arrhythmias patterns. 

In future works, we intend to use the same ANN concept 

with more neurons in hidden layers and other input features 

(e.g. time and frequency domain features), i.e. wavelets 

transform coefficients or mel-frequency cepstrum coefficients 

(MFCC) to solves different problems inside of the cardiac 

arrhythmia context and other area such as emotion recognition 

based in speech emotion recognition and/or biosignal emotion 

recognition. 
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