Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/15479
Autoria: Gomes, João Henriques Oliveira
Orientação: Silva, João Pedro Afonso Oliveira da
Data: 22-Nov-2017
Título próprio: Pulmonary nodule segmentation in computed tomography with deep learning
Referência bibliográfica: Gomes, J. H. O. (2017). Pulmonary nodule segmentation in computed tomography with deep learning [Dissertação de mestrado, Iscte - Instituto Universitário de Lisboa]. Repositório do Iscte. http://hdl.handle.net/10071/15479
Palavras-chave: Computer vision
Medical imaging
Pulmonary nodules
Image segmentation
Deep learning
Ciência da computação
Visão computacional
Tecnologia médica
Cancro
Machine learning
Resumo: Early detection of lung cancer is essential for treating the disease. Lung nodule segmentation systems can be used together with Computer-Aided Detection (CAD) systems, and help doctors diagnose and manage lung cancer. In this work, we create a lung nodule segmentation system based on deep learning. Deep learning is a sub-field of machine learning responsible for state-of-the-art results in several segmentation datasets such as the PASCAL VOC 2012. Our model is a modified 3D U-Net, trained on the LIDC-IDRI dataset, using the intersection over union (IOU) loss function. We show our model works for multiple types of lung nodules. Our model achieves state-of-the-art performance on the LIDC test set, using nodules annotated by at least 3 radiologists and with a consensus truth of 50%.
A deteção do cancro do pulmão numa fase inicial é essencial para o tratamento da doença. Sistemas de segmentação de nódulos pulmonares, usados em junção com sistemas de Deteção Assistida por Computador (DAC), podem ajudar médicos a diagnosticar e gerir o cancro do pulmão. Neste trabalho propomos um sistema de segmentação de nódulos pulmonares, recorrendo a técnicas de aprendizagem profunda. Aprendizagem profunda é um sub-campo de aprendizagem automática, responsável por vários resultados estado da arte em datasets de segmentação de imagem, como o PASCAL VOC 2012. O nosso modelo final é uma 3D U-Net modificada, treinada no dataset LIDC-IDRI, usando interseção sobre união como função de custo. Mostramos que o nosso modelo final funciona com vários tipos de nódulos pulmonares. O nosso modelo consegue resultados estado da arte no LIDC test set, usando nódulos anotados pelo menos por 3 radiologistas, com uma verdade consensual de 50%.
Designação do grau: Mestrado em Engenharia Informática
Arbitragem científica: yes
Acesso: Acesso Aberto
Aparece nas coleções:T&D-DM - Dissertações de mestrado

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
master_joao_oliveira_gomes.pdf2,42 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.