Skip navigation
Logo
User training | Reference and search service

Library catalog

Retrievo
EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/1472
acessibilidade
Title: Comparative Study Of Artificial Neural Network And Box-Jenkins Arima For Stock Price Indexes
Authors: Cancela, Ângela Mar isa Roldão
Orientador: Mendes, Diana
Keywords: ARIMA models
Artificial neural networks
Backpropagation algorithm
Stock price index forecasting
Modelos ARIMA
Redes Neuronais Artificiais
Algoritmo Backpropagation
Previsão de Índices Accionistas
Issue Date: 4-May-2009
Citation: CANCELA, Ângela Mar isa Roldão – Comparative Study Of Artificial Neural Network And Box-Jenkins Arima For Stock Price Indexes [Em linha]. Lisboa: ISCTE, 2008. Dissertação de mestrado. [Consult. Dia Mês Ano] Disponível em www:<http://hdl.handle.net/10071/1472>.
Abstract: The accuracy in forecasting financial time series, such as stock price indexes, has focused a great deal of attention nowadays. Conventionally, the Box-Jenkins autoregressive integrated moving average (ARIMA) models have been one of the most widely used linear models in time series forecasting. Recent research suggests that artificial neural networks (ANN) can be a promising alternative to the traditional ARIMA structure in forecasting. This thesis aims to study the efficiency of ARIMA and ANN models for forecasting the value of four Stock Price Indexes, of four different countries (Germany, Italy, Greece and Portugal), during 2006 – 2007, using the data from preceding 15 years. In order to reach the goal of this study, it is used the Eviews software that allows to find an appropriate ARIMA specification, offered also a powerful evaluation, testing and forecasting tools. In order to predict the time series is used the Matlab software, which provides a package that allows generating a suitable ANN model. It is found that ANN provides forecasted results closest to the actual ones when used the logarithmic transformation. The first difference transformation is required in ARIMA but no one founding model is satisfactory. When this transformation is also used with ANN, the forecasted results are less satisfactory. In fact, it wasn’t possible to compare the efficiency of ARIMA and ANN models for forecasting the time series, due to the founding ARIMA models were not satisfactory. A possible solution would be to reduced the input period of 15 years.
Actualmente a precisão na previsão de séries financeiras, tais como Índices Accionistas, têm captado uma enorme atenção. Tradicionalmente, o modelo Box-Jenkins Autorregressivos Integrados de Médias Móveis (ARIMA) é um dos modelos lineares mais utilizados na previsão de séries temporais. Pesquisas recentes têm demonstrado que as Redes Neuronais Artificiais (RNA) podem constituir uma potencial alternativa à tradicional estrutura ARIMA, na previsão. Esta tese tem por objectivo o estudo da eficiência dos ARIMA e dos modelos de RNA na previsão de quarto índices accionistas de quatro diferentes países (Alemanha, Itália, Grécia e Portugal), desde 2006 a 2007, considerando os 15 anos antecedentes. De modo a atingir este objectivo, foram utilizados dois softwares. Para determinar uma especificação apropriada para os modelos ARIMA foi utilizado o software Eviews que dispõe, também, de ferramentas poderosas para avaliar e testar os modelos, possibilitando ainda a previsão através dos mesmos. De forma a encontrar modelos RNA apropriados, para prever as séries em estudo, foi utilizado o software Matlab. As RNA forneceram uma boa precisão na previsão das quatro séries logaritmizadas. Uma vez que os modelos ARIMA requerem estacionaridade das séries, foram utilizadas as séries das primeiras diferenças, no entanto não foi encontrado nenhum modelo que pudesse fornecer uma previsão aceitável. Considerando as séries temporais diferenciadas nas RNA, os resultados da previsão foram menos satisfatórios. De facto, não foi possível comparar a eficiência dos modelos na previsão dos índices, uma vez que os modelos ARIMA encontrados não foram satisfatórios. Uma hipótese, na tentativa de encontrar modelos satisfatórios seria reduzir o intervalo de 15 anos de input.
URI: http://hdl.handle.net/10071/1472
Designation: Mestrado em Prospecção e Análise de Dados
Appears in Collections:T&D-DM - Dissertações de mestrado

Files in This Item:
acessibilidade
File Description SizeFormat 
COMPARATIVE STUDY OF ARTIFICIAL NEURAL NETWORK AND BOX-JENKINS ARIMA FOR STOCK PRICE INDEXES.pdf7.27 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.