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Abstract: 
 

 

The accuracy in forecasting financial time series, such as stock price indexes, has focused a 

great deal of attention nowadays. Conventionally, the Box-Jenkins autoregressive integrated 

moving average (ARIMA) models have been one of the most widely used linear models in 

time series forecasting. Recent research suggests that artificial neural networks (ANN) can be 

a promising alternative to the traditional ARIMA structure in forecasting. 

 

This thesis aims to study the efficiency of ARIMA and ANN models for forecasting the value 

of four Stock Price Indexes, of four different countries (Germany, Italy, Greece and Portugal), 

during 2006 – 2007, using the data from preceding 15 years. 

 

In order to reach the goal of this study, it is used the Eviews software that allows to find an 

appropriate ARIMA specification, offered also a powerful evaluation, testing and forecasting 

tools. In order to predict the time series is used the Matlab software, which provides a 

package that allows generating a suitable ANN model. 

 

It is found that ANN provides forecasted results closest to the actual ones when used the 

logarithmic transformation. The first difference transformation is required in ARIMA but no 

one founding model is satisfactory. When this transformation is also used with ANN, the 

forecasted results are less satisfactory. 

 

In fact, it wasn’t possible to compare the efficiency of ARIMA and ANN models for 

forecasting the time series, due to the founding ARIMA models were not satisfactory. A 

possible solution would be to reduced the input period of 15 years. 

 

Keywords: ARIMA models; Artificial Neural Networks; Backpropagation Algorithm, Stock 

price index forecasting;  

Classifications from JEL Classification System: Time-Series Models (JEL:C22); Forecasting 

and Simulation (JEL:E17). 
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Resumo: 
 

 

Actualmente a precisão na previsão de séries financeiras, tais como Índices Accionistas, têm 

captado uma enorme atenção. Tradicionalmente, o modelo Box-Jenkins Autorregressivos 

Integrados de Médias Móveis (ARIMA) é um dos modelos lineares mais utilizados na 

previsão de séries temporais. Pesquisas recentes têm demonstrado que as Redes Neuronais 

Artificiais (RNA) podem constituir uma potencial alternativa à tradicional estrutura ARIMA, 

na previsão. 

 

Esta tese tem por objectivo o estudo da eficiência dos ARIMA e dos modelos de RNA na 

previsão de quarto índices accionistas de quatro diferentes países (Alemanha, Itália, Grécia e 

Portugal), desde 2006 a 2007, considerando os 15 anos antecedentes.  

 

De modo a atingir este objectivo, foram utilizados dois softwares. Para determinar uma 

especificação apropriada para os modelos ARIMA foi utilizado o software Eviews que dispõe, 

também, de ferramentas poderosas para avaliar e testar os modelos, possibilitando ainda a 

previsão através dos mesmos. De forma a encontrar modelos RNA apropriados, para prever as 

séries em estudo, foi utilizado o software Matlab. 

 

As RNA forneceram uma boa precisão na previsão das quatro séries logaritmizadas. Uma vez 

que os modelos ARIMA requerem estacionaridade das séries, foram utilizadas as séries das 

primeiras diferenças, no entanto não foi encontrado nenhum modelo que pudesse fornecer 

uma previsão aceitável. Considerando as séries temporais diferenciadas nas RNA, os 

resultados da previsão foram menos satisfatórios. 

 

De facto, não foi possível comparar a eficiência dos modelos na previsão dos índices, uma 

vez que os modelos ARIMA encontrados não foram satisfatórios. Uma hipótese, na tentativa 

de encontrar modelos satisfatórios seria reduzir o intervalo de 15 anos de input. 

 

Palavras-chave: Modelos ARIMA; Redes Neuronais Artificiais; Algoritmo Backpropagation, 

Previsão de Índices Accionistas;  

Classificações do JEL Classification System: Time-Series Models (JEL:C22); Forecasting 

and Simulation (JEL:E17). 
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Sumário 
 

 

A previsão é uma ferramenta preciosa na definição de estratégia nos mercados financeiros e, 

por consequência, na previsão de índices accionistas. Uma boa previsão permite a tomada de 

decisões mais ponderadas e justificadas, possibilitando que o investidor individual possa 

actuar sobre este tipo de mercados. Para o investidor colectivo a utilização desta ferramenta é 

ainda mais notável, uma vez que, em muitos casos, para além da gestão do próprio capital, 

permite também garantir as responsabilidades assumidas perante o cliente, como acontece no 

caso das seguradoras e bancos.   

 

No entanto, dada a complexidade de alguns processos que intervêm nas estratégias definidas, 

tal como a inflação, é difícil fazer previsão em tempo real. Por esta razão, são, muitas vezes, 

utilizados modelos lineares.  

 

O modelo Box-Jenkins Autorregressivos Integrados de Médias Móveis (ARIMA) é um dos 

modelos lineares mais utilizados na previsão de séries temporais, existindo vários artigos 

sobre a previsão através desses mesmos modelos. Contudo, pesquisas recentes, têm mostrado 

uma boa performance na previsão através das Redes Neuronais Artificiais (RNA). 

 

Com o intuito de comparar a performance na previsão de índices accionistas, através destes 

dois modelos, foram utilizados quatro índices accionistas, de quatro diferentes países – 

Portugal, Grécia, Alemanha e Itália, integrando estes dois últimos o G8. Para tal, considerou-

se um histórico de 15 anos a fim de prever o valor dos índices entre 2006 e 2007. 

 

Para determinar uma especificação apropriada para os modelos ARIMA foi utilizado o 

software Eviews que dispõe, também, de ferramentas poderosas para avaliar e testar os 

modelos, possibilitando ainda a previsão através dos mesmos. De forma a encontrar modelos 

RNA apropriados, para prever as séries em estudo, foi utilizado o software Matlab.  

 

Os resultados obtidos através dos dois modelos foram muito similares, quando aplicados aos 

diferentes índices. Verificou-se uma boa performance na previsão dos quatro índices entre 
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2006 e 2007, utilizando os modelos RNA. Todavia, não foi possível comparar os modelos, 

uma vez que os modelos ARIMA encontrados, não foram satisfatórios.  

 

A estacionaridade das séries é requerida pelos ARIMA, no entanto, no período considerado 

como input, nenhuma das séries era estacionária, pelo que se utilizaram as séries das 

primeiras diferenças. Apesar da diferenciação, não foi possível obter resultados satisfatórios 

com os modelos ARIMA encontrados. Resultados similares a estes foram obtidos nas RNA, 

quando consideradas como input cada uma das quatro séries diferenciadas.  

 

É possível que a existência de perda de informação valiosa, no momento da diferenciação das 

séries em estudo, torne os modelos ARIMA pouco satisfatórios, uma vez que, quando se 

consideram as séries originais se obtêm resultados satisfatórios nas RNA. Uma hipótese, na 

tentativa de encontrar modelos satisfatórios seria reduzir o intervalo de 15 anos de input. 
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INTRODUCTION 
 

 

Forecasting future events based on knowledge given in current data has fascinated people 

throughout history and, consequently, several techniques have been developed to face this 

problem of predicting the future behaviour of a particular series of events. 

 

Forecasting is a key activity for strategy makers. Given the complexity of the fundamental 

processes strategy objectives, such as inflation, stock market returns or stock indices, and the 

difficulty of forecasting in real-time, choice is often taken to simple models. The most well 

known and widely used methods are based on linear probabilistic models using the 

autoregressive (AR), the moving average (MA), the autoregressive/moving average (ARMA) 

and the integrated ARMA models for nonstationary time series. 

 

These models are usually estimated either by least squares or maximum likelihood method. 

They are quite popular since the procedure involved are easy to understand, and the results are 

also easy to interpret. However, ordinary least squares methodology is employed to obtain 

parameters in a simple linear model only. This technique becomes irrelevant when dealing 

with a complex or a nonlinear model. Besides, strict assumptions concerning the specification 

of the model and the estimation of parameters have to be satisfied to this method to produce 

meaningful results.  

 

Recent studies showed that a considerable number of economic relationships are either 

nonlinear in the parameters or even chaotic. Of course, linear regression analysis cannot be 

applied with success in these cases. Nonlinear least squares methods seem to be the most used 

in order to obtain the parameters in nonlinear models. However, one cannot derive a standard 

formula for parameters in these models. The computational procedures are fairly complex 

even though it is based on the same principles as in the ordinary least squares.  
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In last few years some other techniques, such as genetic algorithms and neural networks, have 

been introduced. They have the ability to approximate nonlinear functions, and parameters are 

updated adaptively.  

 

The interest in Artificial Neural Networks has increased tremendously lately. Artificial Neural 

Networks models are applied in many different scientific fields because of their storage and 

learning capabilities. They provide new ways to solve difficult problems and they are 

extremely successful in real life situations. There are five main areas in which Artificial 

Neural Networks models are used: control system, facial and handwriting recognition, 

medical diagnosis, classification and forecasting.  

 

Trading in stock market indices has gained an extraordinary popularity in major financial 

markets around the world. The increasing diversity of financial index related instruments, 

along with the economic growth enjoyed in last few years, has expanded the dimension of 

global investment opportunity either for individual investors or institutional investors. These 

index vehicles provide effective means for investors to hedge against potential market risks. 

They, also, create new profit making opportunities for market speculators and arbitrageurs. 

Thus, being able to accurately forecast a stock market index has profound implications and 

significance to researches and practitioners. Therefore we can imagine forecasting as an 

enormous relevance when we are talking about predict the direction/sign of stock index 

movement. 

 

 

In recent years, there has been a growing number of studies looking at the direction or trend 

of movements of various kinds of financial instruments. Such as Maberly (1986) that explores 

the relationship between the direction of intraday price change; Wu and Zhang (1997) 

investigate the predictability of the direction of change in future spot exchange rate; 

0’Conner, et al. (1997) conduct a laboratory-based experiment and conclude that individuals 

show different tendencies and behaviours for upward and downward series. This further 

demonstrates the usefulness of forecasting the direction of change in price level, that is, the 

importance of being able to classify the future return as gain or a loss. 

 

There are also some studies providing a comparative evaluation of different classification 

techniques regarding their ability to predict the sign of the index return Such as Leung M., et 
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al. (2000) whom evaluate the efficacy of several multivariate classification techniques relative 

to a group of level estimations approaches. They also conduct time series comparisons 

between the two types of models on the basis of forecast performance and investment return. 

 

 

The aim of this study is to evaluate the performance of a classical (ARIMA) and an artificial 

intelligence (ANN) forecasting techniques for four financial time series of four different 

countries. The studied stock price indexes, belongs to four different countries, Germany and 

Italy, which are part of the G8 group and Portugal and Greece. Theoretically, both techniques 

are very similar in that they attempt to discover the appropriate internal representation of the 

time series data.  

 

In order to reach the goal of this study two softwares will be used. The Eviews software will 

able to find an appropriated ARIMA model in order to predict each one of the four time 

series, while Matlab software will allow to generate the ANN model to each one of the same 

time series. 

 

 

This thesis is divided into three Chapters. An overview of the essential features and some 

technical characteristics of the proposed methodologies are firstly approach on Chapter 1, 

mentioning its applicability to similar data. An extensive description of how to find an 

adequate ARIMA model is also done in this chapter. Similarly is discussed basic theory 

underlying the construction of Neural Networks architecture and shown how to approximate 

the system with backpropagation technique.  
 

Chapter 2 is divided in three parts. On the first one is done a brief description of the data as 

well as show some descriptive statistics. The second and the third parts are divided into four 

sections, doing the selection of an ARIMA and an ANN model, respectively, for each stock 

price index. 

 

In Chapter 3 are discussed the results obtained in Chapter 2, as well as, it is conclude about 

this thesis with a perspective on what has been achieved and identifies some prospective 

topics for further research. 
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Chapter 1 
 

 

 

1 – LITERATURE REVIEW 
 

 

1.1 – ARIMA MODELS 
 

 

Early efforts to study time series, particularly in the 19th century, were generally 

characterized by the idea of a deterministic world. Yule (1927) launched the notion of 

stochasticity in time series by assuming that every time series can be regarded as the 

realization of a stochastic process. Based on this simple idea, a number of time series methods 

have been developed since then.  

 

Researchers such as Slutsky (1937), Walker (1931), Yaglom (1955), and Yule (1927) first 

formulated the concept of autoregressive (AR) and moving average (MA) models. A 

considerable body of literature has appeared in the area of time series, dealing with parameter 

estimation, identification, model checking and forecasting.  

 

Box and Jenkins had integrated the existing knowledge, in 1970, with the book “Time Series 

Analysis: Forecasting and Control” which has had an enormous impact on the theory and 

practice of modern time series analysis and forecasting. They also developed a coherent, 

versatile three-stage iterative cycle for time series identification, estimation and validation, 

known as the Box–Jenkins approach. 

 

With the introduction of specialized software, it was observed an explosion in the use of 

autoregressive integrated moving average (ARIMA) models and their extensions in many 

areas of science. Several papers were written about forecasting discrete time series processes 
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through univariate ARIMA models, transfer function (dynamic regression) models, and 

multivariate (vector) ARIMA. Often these studies were of empirical nature, using one or more 

benchmark methods/models as a comparison. They have also been the key to new 

developments, see for instance Gooijer (2006). 

 

 

 

1.1.1 – ARIMA models – Univariate 
 

 

Although Box-Jenkins methodology shown that various models could, between them, mimic 

the behaviour of diverse types of series, there was no algorithm to specify a model uniquely. 

Therefore many techniques and methods have been suggested in order to increase 

mathematical rigour to the search process of an ARMA model, including Akaike’s 

information criterion (AIC), Akaike’s final prediction error (FPE), and the Bayes information 

criterion (BIC). Often these criteria come down to minimizing (in-sample) one-step-ahead 

forecast errors, with a penalty term for overfitting.  

 

There are some methods for estimating the parameters of an ARMA model such as the least 

squares estimator. Although these methods are equivalent asymptotically, in the sense that 

estimates tend to the same normal distribution, there are large differences in finite sample 

properties, which may influence forecasts. In order to minimize the effect of parameter 

estimation errors on the probability limits of the forecasts it is recommended the use of full 

maximum likelihood.  

 

More recently, K im (2003 )  considered parameter estimation and forecasting of AR 

models in small samples. He found that (bootstrap) bias-corrected parameter estimators 

produce more accurate forecasts than the least squares estimator. Landsman  and  

Damoda ran  (1989 )  presented evidence that the James-Stein ARIMA parameter estimator 

improves forecast accuracy relative to other methods, under Mean Square Error (MSE) loss 

criterion.  

 

If a time series is known to follow a univariate ARIMA model, forecasts using disaggregated 
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observations are, in terms of MSE, at least as good as forecasts using aggregated 

observations. However, in practical applications, there are other factors to be considered, such 

as missing values in disaggregated series or outliers when the ARIMA model parameters are 

estimated. When the model is stationary, Hotta and Cardoso Neto (1993) showed that the loss 

of efficiency using aggregated data is not large, even if the model is not known. Thus, 

prediction could be done either by disaggregated or aggregated models. 

 

Usual univariate ARIMA modelling has been shown to produce one-step-ahead forecasts as 

accurate as those produced by competent modellers (Hill and Fildes, 1984; Libert, 1984; 

Poulos, et al., 1987).  

 

Rather than adopting a single AR model for all forecast horizons, Kang (2003) empirically 

investigated the case of using a multi-step-ahead forecasting AR model selected separately for 

each horizon. The forecasting performance of the multi-step-ahead procedure appears to 

depend on, among other things, optimal order selection criteria, forecast periods, forecast 

horizons, and the time series to be forecast. 

 

 

 

1.1.2 – ARIMA models – Multivariate 
 

 

A multivariate generalization of the univariate ARIMA model is the vector ARIMA 

(VARIMA) model. The population characteristics of VARMA processes appear to have been 

first derived by Quenouille (1957). VARIMA models can accommodate assumptions on 

exogeneity and on contemporaneous relationships, they offered new challenges to forecasters 

and policymakers. 

Vector autoregressions (VARs) constitute a special case of the more general class of VARMA 

models. In essence, a VAR model is a fairly unrestricted (flexible) approximation to the 

reduced form of a wide variety of dynamic econometric models. VAR models can be 

specified in a number of ways. In general, VAR models tend to suffer from “overfitting” with 

too many free insignificant parameters. As a result, these models can provide poor out of 

sample forecasts, even though within-sample fitting is good; see, e.g., Liu, et al. (1994) and 

Simkins (1995). Instead of restricting some of the parameters in the usual way, Litterman 
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(1986) and others imposed a prior distribution on the parameters, expressing the belief that 

many economic variables behave like a random walk.  

The Engle and Granger (1987) concept of cointegration has raised various interesting 

questions regarding the forecasting ability of error correction models (ECMs) over 

unrestricted VARs. 

 

 

 

1.2 – NEURAL NETWORKS MODELS 
 

 

The exceptional characteristic of the human brain it is the ability to learn from the past, which 

is facilitated by the complex system of sending and receiving electrical impulses among 

neurons. These facts has fascinated numerous researchers and led to the creation of a 

cognitive science, also known as artificial intelligence. The construction of a network, known 

as an artificial neural network (ANN) simulates brain characteristics. Neural derives from 

neuron, and artificial from the fact that it is not biological. Unlike the brain, the ANN 

performs discrete operations, which are made possible with electronic computers’ ability to 

swiftly perform complex operations. 

 

In 1943, McCulloch and Pitts developed the first computing machines that intend to simulate 

the structure of the biological nervous system and could perform logic functions through 

learning. The output resulting from this network was a combination of logic functions, which 

were used to transmit information from one neuron to another. This eventually led to the 

development of the binary probit model. According to this model, the neural unit could either 

swhich on or off depending on whether the function was activated or not. A threshold 

determines the activation of the system: if the input is greater than the threshold, then the 

neuron is activated and equal to 1, otherwise it is 0.  

 

Donald Hebb (1949) introduced the first learning law. This learning law, also known as Hebb 

learning rule, is based on simultaneous combinations of neurons capable of strengthening the 

connection between them. 

 

The work of McCulloch and Pitts influenced another researchers such as, Rosenblatt (1962), 
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that developed advanced models that had ability to learn, of which the best known is the 

“perceptron”. It is a single feedforward network. The output obtained from this single layer is 

the weighted sum of different inputs.  

 

A significant advance in Neural Networks came in 1967 with the introduction of the smooth 

sigmoid function as activation function by Cowan. This function has the ability to 

approximate any nonlinear function. Instead of switching from off to on like the perceptron, 

the activation function assists the output function to turn on gradually as it is activated. In 

1974, Werbos published the “backpropagation” learning method. The backpropagation 

technique enables the determination of parameter values for which the error is minimized. 

Prior to the introduction of back-propagation method, it was difficult to determine multiple 

parameter values. 

 

Since the 1940s, Artificial Neural Network (ANN) have been used in various applications in 

engineering. As artificial intelligence have improved, they also began to be used in the 

solution of medical, military and astronomical problems. Recently, ANN have been regularly 

applied to the research area of finance, such as stock market prediction, and bankruptcy 

perdition of economic agents. But the largest application of neural network in economics and 

finance is found in the area of forecasting time series, due to their ability to classify a set of 

observations into different categories, and their forecasting aptitude.  

 

 

 

1.3 – PROPERTIES OF FINANCIAL TIME SERIES 
 

 

The predictability of most common financial time series such as stock prices is a controversial 

issue and has been questioned in scope of the efficient market hypothesis (EMH). The EMH 

states that the current market price reflects the assimilation of all the information available. 

This means that given the information, no prediction of future changes in the price can be 

made. As new information enters the system the unbalanced state is immediately discovered 

and quickly eliminated by a correct change in market price. 

 

In recent years, the EMH became a controversial issue due to many reasons. On one side, it 
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was shown in some studies that excess profits can be achieved using only past price data, on 

the other side it is very difficult to test the strong form due to lack of data. 

 

Another reason that helps the predictability being a complex task are some statistical 

properties of the time series that are different at different points in time. For example the 

volatility (standard deviation) is different during different periods. There are periods, where 

the index values fluctuates greatly on a single day, and more calm periods. And, of course, 

financial time series are influenced by business cycle.  

 

 

We can’t forgotten that financial time series are usually very noisy, i.e., there is a large 

amount of random (unpredictable) day-to-day variations. The events, such as interest rate 

changes, announcements of macroeconomic news as well as political events are random and 

unpredictable and contribute to the noise in the time series. The noisy nature of financial time 

series makes it difficult to distinguish a good prediction algorithm from a bad one. 

 

However, forecasting is a key activity to define strategies in various fields, nowadays is 

crucial when trading in stock market indices. It has broadened the dimension of global 

investment opportunity to both individual and institutional investors, as provide an effective 

means for investors to hedge against potential market risks and create new profit making 

opportunities for market speculators and arbitrageurs. 

 

In many forecasting situation, more than one component is needed to capture the dynamics in 

a series to be forecast. Usually, a time series could be defined as: 

 

€ 

yt = Tt + St + Ct + εt                   (1.3.1) 

 

where T is the trend component, S is the seasonal component, C is the cyclical component 

and 

€ 

ε  is the residue component, which is white noise. Typically, it is assumed that each 

component is uncorrelated with all other components at all leads and lags.  
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1.4 – MODELS USED 
 

 

Traditionally, the autoregressive integrated moving average (ARIMA) model has been one of 

the most widely used models in time series prediction. Recent research activities in 

forecasting with ANN suggest that ANN can be a promising alternative to the traditional 

ARIMA structure. These linear models and ANN are often compared with mixed conclusions 

in terms of the superiority in forecasting performance.  

 

The ARIMA time series models allow 

€ 

Yt , random variable, to be explained by past, or lagged 

values of Y itself and stochastic error terms.  

 

An ANN consists of several layers of nodes: an input layer, an output and zero or more 

hidden layers. The input layer consists of one node for each independent variable, while the 

output layer consists of one or more nodes that correspond to the final decision. The hidden 

layers lie in between, and each consists of several nodes that receive inputs from nodes in 

layer below them and feed their outputs to nodes in layers above.  

 

There are several papers dealing with the comparison of different forecasting methods. In 

what follows, it is briefly review some of them.  

 

In 2000, Leung et al. evaluated the efficacy of several multivariate classification techniques 

relative to a group of level estimation approaches, conducted time series comparisons 

between the two types of models and the basis of forecast performance and investment return. 

The classification models used, by them, to predict direction/sign of stock index movement 

based on probability, include linear discriminant analysis, probit, logit and probabilistic neural 

network. Their empirical experimentation suggests that probabilistic neural network was the 

best performer among the forecasting models evaluated in their study. 

 

Ho et al. (2002), drew a comparative study between ANN and Box-Jenkins ARIMA 

modelling in time series prediction. The neural network architectures evaluated by them, in 

this study, were the multiplayer feedforward network and the recurrent neural network 
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(RNN). They concluded that both ARIMA and RNN models outperform the feedforward 

model; in terms of lower predictive errors and higher percentage of correct reversal detection. 

They also investigated the effect of varying the damped feedback weights in recurrent net, 

and they found that RNN at the optimal weighting factors gave more satisfactory 

performances than ARIMA model.  

 

Phua, et al. (2003) applied generically evolved neural networks models to predict the Straits 

Times Index of the Stock Exchange of Singapore. Their studies show that satisfactory results 

can be achieved when applying these techniques. 

 

Kamruzzaman and Sarker (2003) investigated three ANN based forecasting models to predict 

six foreign currencies against Australian dollar using historical data and moving average 

technical indicators, and a comparison was made with traditional ARIMA model. All the 

ANN based models outperformed ARIMA model measured on five performance metrics used 

by them. Their results demonstrate that ANN based model can forecast the exchange rates 

closely. 

 

 

Following the papers cited above and taking in consideration the growing interest in 

forecasting, in this study it is expected to evaluate the performance of an ARIMA and an 

ANN model when applied for predicting four time series representing stock price indexes. 

 

 

 

1.4.1 – Classical methods for time series forecasting 
 

 

On a classical time series forecasting it is assumed that the future value is a linear 

combination of historical data. There are several time series forecasting models, however the 

most highly popularized is Box-Jenkins ARIMA model which was successfully applied in 

financial time series forecasting, and also as a promising tool for modelling the empirical 

dependencies between successive time between failures. 
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Before broaching the structure of the ARIMA model it is done a brief overview of basic 

concepts of linear time series analysis such as stationarity, seasonality, unit-root 

nonstationarity and a short reference to the most classical common types of time series 

forecasting process. 

A random or stochastic process is a collection of random variables ordered in time. If a 

random variable, Y, it is continuous will be denote as Y(t), and  if it is discrete will be denoted 

by 

€ 

Yt . A type of stochastic process that received a great deal of attention and scrutiny by time 

series analysts is the stationary stochastic process. 

 

 

Stationarity. Broadly speaking, a time series is said to be stationary if the mean, the variance 

and the autocovariance (at various lags) remain the same no matter at what point we measure 

them, that is, they are constant over the time. 

 

A time series 

€ 

Yt  is said to be strictly stationary if the joint distribution of (

€ 

Yt1 ,

€ 

Yt2 , …, 

€ 

Y
tk

) and 

of (

€ 

Yt1− t ,

€ 

Yt2− t , …,

€ 

Ytk − t ) are identical for all t, where 

€ 

k ∈ /N , 

€ 

ti ∈ /N and   

€ 

i =1,,k , i.e., strict 

stationary requires that the joint distribution of (

€ 

Yt1 ,

€ 

Yt2 , …,

€ 

Y
tk

) is invariant under time shift.  

 

This is a very strong condition that is hard to verify empirically. A weaker version of 

stationarity is often assumed. A time series 

€ 

Yt  is weakly stationary if both the mean of 

€ 

Yt  and 

the covariance between 

€ 

Yt  and 

€ 

Yt−s  are time-invariant, 

€ 

s∈ /N . Thus 

€ 

Yt  is weakly stationary if  

• 

€ 

E(Yt ) = µ , which is a constant and 

• 

€ 

Cov(yt ,yt−s) = γ s , is called lag-s autocovariance of 

€ 

Yt . 

 

Stationarity is very important in time series because if a time series is nonstationary (time 

varying mean or a time-varying variance or both) it’s behaviour only can be study for the 

period under consideration. Each set of time series data will therefore be a particular episode. 

Thus, for the purpose of forecasting nonstationary time series may be of little practical value. 

 

 

Autocorrelation function (ACF). The correlation coefficient between two random variables 

X and Y, measures the strength of linear dependence between X and Y, and take values 
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between -1 and 1. It is defined as  

€ 

ρX ,Y =
Cov(X,Y )

Var(X)Var(Y )
=

E[(X − X )(Y −Y )]
E(X − X )2E(Y −Y )2

, 

where 

€ 

X  is the mean of X and 

€ 

Y  the mean of Y. If 

€ 

ρX ,Y = 0, then X and Y are independent 

random variables. 

Consider a weakly stationary time series 

€ 

Yt . When the linear dependence between 

€ 

Yt  and it’s 

past values 

€ 

Yt− i  is of interest, the concept of correlation is generalized to autocorrelation. The 

correlation coefficient between 

€ 

Yt  and 

€ 

Yt−s  is called the lag-s autocorrelation of 

€ 

Yt  and is 

commonly denoted by 

€ 

ρs , which under the weak stationarity assumption is a function defined 

by 

€ 

ρs =

(Yt −Y 
t= s+1

T

∑ )(Yt−s −Y )

(Yt −Y 
t=1

T

∑ )2
. 

As a matter of fact, a linear time series model can be characterized by its Autocorrelation 

function (ACF), and linear time series modelling makes use of the sample ACF to capture the 

linear dynamic of the data.  

 

If 

€ 

ρ1 is nonzero, it means that the series is first order serially correlated. If 

€ 

ρs dies off more or 

less geometrically with increasing lag s, it is a sign that the series obeys a low-order 

autoregressive process. If 

€ 

ρs drops to zero after a small number of lags, it is a sign that the 

series obeys a low-order moving-average process. 

 

 

White noise. A time series 

€ 

Yt  is called white noise if 

€ 

Yt  is a sequence of independently and 

identically distributed (iid) random variables with finite mean and variance. In particular, if 

€ 

Yt  

is normally distributed with mean zero and variance 

€ 

σ 2 and no serial correlation, then it is 

said to be Gaussian white noise. For a white noise series, all the ACFs are zero. In practice, if 

all sample ACFs are close to zero, then the series is a white noise series. 

 

 

Random walk process. A random walk process is generally an approach used in the equity 

market to describe, for example, the behaviour of stock prices or exchange rates. This process 
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continually drifts from any expected value in a specific period of time. In this approach it is 

not considered any constant value or constant variance over time. 

 

Usually in the literature we can distinguish between two types of random walk process: 

random walk without a drift (1.4.1) (i.e., no constant or intercept term) and random walk with 

a drift (1.4.2) (i.e., a constant term is present): 

 

€ 

yt = yt−1 + εt                    (1.4.1) 

 

€ 

yt =α + yt−1 + εt                   (1.4.2) 
 

where 

€ 

y0  is a real number denoting the starting value of the process, and 

€ 

εt  is a white noise 

series and α is known as drift parameter. 

 

If a trend in a time series process is completely predictable and not variable, it is said a 

deterministic trend, whereas if it is not predictable, it is said a stochastic trend. 

 

 

Unit Root Process. Writing a random walk process as  

 

€ 

yt = ρ yt−1 + εt , −1≤ ρ ≤1                 (1.4.3) 

 

then if ρ=1, we have a random walk process without a drift. Moreover, if ρ is in fact 1, we 

face what is known as the unit root problem, that is, a situation of nonstationarity; thus in this 

case the variance of 

€ 

Yt  is nonstationary. The name “unit root” is due the fact that ρ=1. 

 

However, if |ρ|<1, then it can be shown that the time series 

€ 

Yt  is stationary. In practice, it is 

important to find out if a time series process has a unit root or not. 
 

 

In the following definitions, the constants will be defined by 

€ 

α i with 

€ 

i ∈ /N  or by 

€ 

βi with 

€ 

i ∈ /N . 

Autoregressive process. Consider the following equation  
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€ 

Yt =α0 +α1Yt−1 + εt                   (1.4.4) 

 

where 

€ 

εt  is white noise, i.e., a random number from a distribution with following properties: 

• 

€ 

E(εt ) = 0  

• 

€ 

Var(εt ) =σ 2  and 

• 

€ 

Cov(εt−s,εt ) = 0 , if s ≠ 0  

Cov means Covariance and is a measure of association between two variables, that is, 

 

€ 

Cov(X,Y ) =
1
n

(Xi − X )(Yi −Y )
i=1

n

∑                 (1.4.5) 

 

Consequently, white noise is a sequence of randomly distributed real numbers with zero mean 

and no association between numbers drawn at different points of time. 

 

As the current value, 

€ 

Yt , is expressed in terms of the past value, 

€ 

Yt−1, the equation (1.4.4) is 

called AR(1) model or first order autoregressive model, where it is assumed that 

€ 

Yt−1 and 

€ 

εt  

are independent. 

 

The extension of the equation presented before to two consecutive past values would lead to 

an AR(2) model, that is 

 

€ 

Yt =α0 +α1Yt−1 +α2Yt−2 + εt =α0 + α iYt− i+
i=1

2

∑ εt               (1.4.6)
 

 

More generally, we say that a variable 

€ 

Yt  is autoregressive of order p, AR(p), with 

€ 

p∈ /N , if 

it is a function of its p past values and can be expressed as 

 

€ 

Yt =α0 + α pYt− p+
i=1

p

∑ εt                   (1.4.7) 

 

 

Moving Average process. When the current value, 

€ 

Yt , of a time series is expressed in terms 
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of current and previous values of the stochastic error term 

€ 

εt , we are talking about the first 

order moving average, MA(1), that is 

 

 

€ 

Yt = β0εt + β1εt−1                   (1.4.8) 

 

where 

€ 

εt , is a purely random term with mean zero and variance 

€ 

σ2. 

When (1.4.8) contains the q most recent values of the stochastic error term, we have a MA(q) 

model, which is given by the following equation: 

 

 
  

€ 

Yt = β0εt + β1εt−1 ++ βqεt−q = β iεt− i
i= 0

q

∑                (1.4.9) 

 

 

Autoregressive Moving Average process. An Autoregressive Moving Average process, 

ARMA model, is a combination between the autoregressive model and a moving average 

model.  In general, an ARMA (p,q)  is a combination of an AR(p), equation (1.4.7), and 

MA(q), equation (1.4.9), and can be written as 

 

€ 

Yt =α0 + α iYt− i +
i=1

p

∑ β iεt− i
i=1

q

∑                (1.4.10) 

 

In practice, one applies the ARMA process not to the time series, but to transformed time 

series. It is often the case, that the time series of differences is stationary in spite of the 

nonstationarity of the underlying process. Stationary time series can be well estimated by the 

ARMA model. That leads to the definition of the ARIMA model. 

 

 

Autoregressive Integrated Moving Average process. Popularly known as the Box-Jenkins 

methodology, but technically known as the ARIMA methodology, these methods emphasis is 

not on constructing single or simultaneous equation models, but on analysing the 

probabilistic, or stochastic, properties of economic time series on their own under the 

philosophy “let the data speak for themselves”. Unlike the regression models, in which 

€ 

Yt  is 

explained by n regressor 

€ 

X1, 

€ 

X2, …, 

€ 

Xn , the ARIMA time series models allow 

€ 

Yt  to be 
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explained by past, or lagged values of 

€ 

Y  itself and stochastic error terms. For these reason, 

these models are sometimes called theoretic models because they are not derived from any 
economic theory – and economic theories are often basis of simultaneous equation models. 

 

The previous mentioned models are based on assumptions that the time series involved are 

(weakly) stationary. But it is known that many economic time series are nonstationary, that is, 

they are integrated. If a time series is integrated of order 1, i.e., I(1), it’s first differences are 

I(0), that is, stationary. Similarly, if a time series is I(2), it’s second difference is I(0). In 

general, if a time series is I(d), after differencing it d times we obtain an I(0) series. 

 

Therefore if we needed to difference a time series d times in order to make it stationary and 

then apply the ARMA(p,q) process to it, we say that the original time series is an 

ARIMA(p,d,q) process, that is, it is an autoregressive integrated moving average time series. 

The first task in estimating ARIMA model is to specify p (the number of autoregressive 

terms), d (the number of first differences or other transformation) and q (the number of 

moving-average terms). Once these parameters have been chosen, the job of specifying the 

ARIMA equation is complete, and the computer estimation package will then calculate 

estimates of the appropriate coefficients. Because the error term in the moving average 

process is, of course, not observable, a non linear estimation technique must be used instead 

of OLS. 

 

For the forecasting purposes the usage of ARIMA model can be summarized by the flowchart 

shown in the following figure. 
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Figure 1.4.1: Summarized proceeding to modulate an ARIMA 

 

In the first step, the differencing operator is applied to the time series until it becomes 

stationary. The determination whether 

€ 

Yt  is stationary or not can be performed by visualizing 

the correlogram of 

€ 

Yt . It’s rare to find in economic examples a situation calling for d > 1. If 

the ACF of the dependent variable approaches zero as the number of lags increases (“the 

correlogram converges to zero”), then the series is stationary; a nonstationary series will show 

little tendency for the ACFs to decrease in size as the number of lags increase. After an 

examination of the plot and the ACF makes the researcher feel comfortable that enough 

transformations have been applied to make the resulting series stationary. The next step is to 

choose integer values for p and q. After the d value is determined, any non-zero mean is 

removed from the time series (the mean is calculated and subtracted from each element of the 

time series).  

 

Next, the parameters p and q are estimated. The number of autoregressive terms (p) and 

moving average terms (q) to be introduced are typically determined at the same time. These 

are chosen by finding the lowest p and q for each residuals of the estimated equation devoid 

to the autoregressive and moving-average components. This is done by: 
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• First point: choosing an initial (p,q) set (making them as small as is reasonable),   

• Second point: estimating equations (1.4.7) and (1.4.9) for that (p,q) and then chosen 

above, and 

• Third point: testing the residuals of the estimated equation to see if they are free of 

autocorrelations. If they aren’t, then either p or q is increased by one, and the process is 

begun again. 

 

To complete first point, choosing an initial (p,q) set, an ARIMA(0,d,0) is run and the residuals 

from this estimate are analysed with two statistical measures: the ACF, and a new measure, 

the partial ACF (PACF), which is similar to ACF and we expect that will hold the effects of 

the other lagged residuals constant. That is, the partial ACF, for the 

€ 

k th lag is the correlation 

coefficient between 

€ 

et  and 

€ 

et−k, holding constant all other residuals. Almost every different 

ARIMA model has a unique ACF/partial ACF combination; the theoretical ACF and partial 

ACF patterns are different for different ARIMA(p,d,q) specifications. In particular, the last 

lag before the PACF moves toward zero with an exponential decay is typically a good value 

for p, and the last lag before the ACF moves toward zero with an exponential decay is 

typically a good value for q.  

Once the (p,d,q) parameters have been chosen, the equation is estimated by the computer’s 

ARIMA equation package. Since the moving average process error term cannot actually be 

observed, an ARIMA estimation with q >0 requires the use of a nonlinear estimation 

procedure rather than OLS, if q=0, OLS can be used. 

 

After estimating an initial (p,d,q) combination, calculate and inspect the ACF’s and PACF’s 

of the residuals. If these ACF’s and PACF’s are all significantly different from zero (use the t-

test if in doubt) then the equation can be considered as in the final specification (free from 

autoregressive and moving average components). If one or more of the PACF’s or ACF’s are 

significantly different from zero, then increase p (if a PACF is significant) or q (if ACF is 

significant) by one and reestimate the model. This process will be performed as long as the 

residuals have no autoregressive or moving-average components. 

 

The last step, validation, is used for forecasting proposes. As a final check, some researchers 

compare the variance of ARIMA(p,d,q) with those of ARIMA(p+1,d,q) and 

ARIMA(p,d,q+1). If ARIMA(p,d,q) has the lowest variance, then it should be considered the 
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final specification. Also useful is a Q-statistic, a measure of whether the first k ACF’s are 

(jointly) significantly different from zero. If the Q-statistic, which is usually printed out by 

ARIMA computer packages, is less critical chi-square value, then the model can be 

considered free from autoregressive and moving average components. 

 

 

 

1.4.2 – Artificial Neural Networks for time series forecasting 
 

 

Neural network methods are coming from the brain science of cognitive theory and 

neurophysiology. Thus Artificial Neural networks (ANN) are characterized by pattern of 

connections among the various network layers, the numbers of neurons in each layer, the 

learning algorithm and the neurons activation functions. A neural network is a set of 

connected input units (also termed neurons, nodes or variables) 

€ 

X0, 

€ 

X1, 

€ 

X2, …, 

€ 

Xn  and one 

or more output variables such as 

€ 

Y0 , 

€ 

Y1, 

€ 

Y2 , …, 

€ 

Yn  where each connection has an associated 

parameter indicating the strength of this connection, the so called weight. During the learning 

phase, the network learns by adjusting the weights so as to be able to correctly predict or 

classify the output target of a given set of inputs samples. 

Usually in ANN modelling one of the inputs, 
  

€ 

Xi , i ∈ 1,…,n{ }, known as bias, have to be 

included and assigned with value 1. 

 

There exits a huge variety of different ANN types, but the most commonly used are the multi-

layer feedforward and the recurrent networks. 

 

 

 

1.4.2.1 – Multi-layer Feedforward Neural Networks 
 

 

In the multi-layer feedforward ANN the information is transmitted from the input layer to the 

output layer. It does not allow any internal feedback of information. As in the human brain, 

the signals flow in one direction, from the input to the output layer. Feedforward networks are 



C o m p a r a t i v e  s t u d y  o f  A N N  a n d  B o x - J e n k i n s  A R I M A  f o r  S t o c k  p r i c e  i n d e x e s  

 

 21 

guaranteed to reach stability (Kermanshahi, et.al., 2002). 

 

For each training sample, the input variables are fed simultaneously into a layer of units 

making up the input layer. The weighted outputs of these units are, in turn, fed simultaneously 

to a second layer of units known as a hidden layer. The hidden layer’s weighted outputs can 

be input to another hidden layer, and so on. The weight outputs of the last hidden layer are 

inputs to units making up the output layer, which issues the network’s prediction for a given 

set of samples. 

 

A Neural Network system with 2 hidden units is shown in following figure. 

 

 

 
Figure 1.4.2: Feedforward Neural Networks (single hidden layer network)  

 

 

Input-hidden units relationship can be expressed as: 

 

                 (1.4.11) 

 

where 

€ 

H j  are hidden variables, 

€ 

Xi  are input variables and the 

€ 

α ij , are networks weights that 

regulate flow from input to hidden variables. 

 

 

Similarly, output variables are weighted sum of hidden units: 
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€ 

Yj = β jH j
j= 0

m

∑                  (1.4.12) 

 

where 

€ 

H j  are hidden variables, 

€ 

Yj   are output variables and 

€ 

β j , are connection strength 

between hidden and output variables. 

Substituting (1.4.11) in (1.4.12), we have 

 

  .               (1.4.13) 

 

which gives the complete relationship between input, hidden and output variables. 

 

 

Not all relationships in economics and finance are direct. The hidden layers capture all non-

direct relationships between input and output variables. All intermediate variables are 

represented in ANN as unknown units. Due the lack of information about the variables 

represented in the hidden layers, ANN is considering by most researchers as a “Black Box”.  

 

The number of hidden layers and units in each hidden layer are related with the ability of 

network to approximate more complex functions, however networks with complex structures 

don’t perform necessarily better. These networks seem more sensitive to noise, which in turn 

obstructs the learning process. Although more hidden units in the system normally result in 

better forecast, too many hidden units may lead to over-fitting on sample data. The decision 

concerning the number of hidden layers is still based on trial and error. 

 

In what follows in this thesis, the parameters and weights are estimated during the training 

process using the Backpropagation algorithm, one of the most powerful algorithm related to 

ANN. 
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1.4.2.2 – Transfer Function in ANN 
 

 

The use of transfer function has been indispensable in ANN. Let’s assume in the equation 

(1.4.13) a function f, the transfer function, defined by 

 

€ 

Yj = f β j Xiα ji( )
i= 0

n

∑
j= 0

m

∑
 

 
  

 

 
  .               (1.4.14) 

 

The transfer function is responsible for transferring the weighted sum of inputs to some value 

that is given to the next neuron. There are several types of transfer functions, among which 

Binary transfer function, 

€ 

f (z) =
1, z > 0
0, z ≤ 0
 
 
 

, 

€ 

z ∈ ℜ     and 

Sigmoid transfer function, 

€ 

f (z) =
1

1+ e−z
 , 

€ 

z ∈ ℜ . 

 

Note that the return value of this functions lies in the interval [0,1], and in consequence these 

functions cannot be used in ANN to approximate functions, which can also take negative 

values (e.g. returns time series). 

 

As shown below, in Figure 1.4.3, the binary transfer function and the sigmoid transfer 

function, are bound between 0 and 1. The difference lies on the fact that the logistic function 

turns on gradually when activated. When the logistic function approaches 0, the function is 

almost insensitive to impulse received from input layer, meaning output is inactivated.  

 

The tangent hyperbolic transfer function, 

€ 

f (z) =
sinh(z)
cosh(z)

=
ez − e−z

ez + e−z
 , 

€ 

z ∈ ℜ, 

has the advantage of having the output interval, [-1,1], thus, it can be used in ANN that need 

to approximate functions that can take on negative values (e.g. stock index differences). 
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Figure 1.4.3: Transfer functions 

 

A wrong functional form of the model under investigation leads to incorrect estimation of 

parameters. ANN model builders are less concerned about the shape of the function, as 

specified by the magnitude of the functional parameters.  

 

The Neural Networks model parameters are obtained by using the learning algorithms. The 

success or failure of these learning algorithms depends on whether or not the transfer function 

is differentiable. The most common nonlinear functions used are the sigmoid function and the 

tangent hyperbolic function. When the network contains hidden layers the sigmoid function is 

preferred to binary one, since the latter renders a model difficult to train. In this instance, the 

error obtained during the training process (which serves in the estimation of parameters) is 

constant, hence the gradient does not exist or is zero, making the learning process impossible 

when used some learning algorithms, such as backpropagation. With the sigmoid function it is 

possible to tell whether the change in weights is good or bad, because a small change in the 

weights will generate some change in output. With the step unit function, a small change in 

weights will usually generate no change in output. 

 

If the relationship between input units and hidden units is nonlinear, a typical ANN 

specification consists of approximating the relation by the logistic function. We have then 

 

 

€ 

H j =
1

1+ e
− α ij xi
i=0

n

∑
.                (1.4.15) 

 

Placing (1.4.15) in (1.4.12), we have  
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             (1.4.16) 

 

where f(x) is an identity function, m is the number of hidden units n is the number of input 

units, 

€ 

α ij  are the connection strengths between the input layer and hidden layer, 

€ 

β j  represent 

network weights that connect the hidden layer to the output layer and H(X) is a logistic 

function connecting the output layer to the input layer. 

 

 

 

1.4.2.3 – Learning Rule 
 

 

The power of Neural Network models depends to a large extent on the way their layer 

connection weights are adjusted over time. Usually the weights of the ANN must be adjusted 

using some learning algorithm in order for the ANN to be able to approximate the target 

function with a sufficient precision.  

 

A learning rule is defined as a method that modifies the weights and bias of a network. This 

method is also known as a training algorithm. The reasoning behind training is that the 

weights are updated in a way that will facilitate the learning of patterns inherent to the data. 

Data are divided into two sets, a training set and a test set. The training set serves to estimate 

weights in the model. Hence, the learning process is a crucial phase in ANN modelling. 

Usually the test set, is consisting of 10% to 30% of the total data set. The algorithm used to 

estimate the values of parameters, depends on the type of ANN under investigation. 

 

 

 

1.4.2.4 – Backpropagation learning algorithm 
 

 

Backpropagation is by far the most popular neural network algorithm that has been used to 
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perform training on multi-layer feedforward neural networks. It is a method for transmission 

responsibility for mismatches to each of the processing elements in the network by 

propagating the gradient of the activation function back through the network to each hidden 

layer down to the first hidden layer. The weights (  

€ 

ω1,ω2,…,ωn ) are then modified so as to 

minimize the mean squared error between the network prediction and the actual target.  

 

In other words, the network processes an output, which depends on the networks weights, 

(that initially are assigned random values – usually between -1 and 1), input units, hidden 

units and the transfer function. The difference between the process and actual output (target), 

known as network error is propagating backward into the network. This error is used to 

update weights. This process is repeated until the total network error is minimized. 

 

The error function can be defined as  

 

  

€ 

E(  ω ) =
1
2

(
t=1

N

∑ Tt −Yt )
2                 (1.4.17) 

 

where 

€ 

Tt  and 

€ 

Yt  are the targeted output value and the process output in the 

€ 

t th  iteration, 

respectively, i.e.,   

€ 

E(  ω ) is the sum of prediction errors for all training examples. 

 

Prediction errors of individual training examples are in turn equal to the sum of the 

differences between output values produced by the ANN and the desired (correct) values.   

€ 

 
ω  

is the vector containing the weights of the ANN. The goal of a learning algorithm is to 

minimize   

€ 

E(  ω ) for a particular set of training examples. There are several ways to achieve 

this, one common way is using the gradient descendent method. 

 

 

 

1.4.2.4.1 – Stochastic gradient descent backpropagation learning algorithm 
 

 

The gradient descendent method, can be described by 4 steps: 
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• First Step: choose some random initial values for the model parameters. 

• Second Step: calculate the gradient of the error function   

€ 

∇E(  ω ) : 

  

€ 

∇E(ω) =
∂E(ω)
∂ω1

,∂E(ω)
∂ω2

,…,∂E(ω)
∂ωn

 

 
 

 

 
 . 

• Third Step: change the model parameters so that we move a short distance in the 

direction of the greatest rate of decrease of the error, i.e., in the direction of -  

€ 

∇E(  ω )  

• Fourth Step: Repeat second and third steps until   

€ 

∇E(  ω )  gets close to zero. If the 

gradient of E is negative, we must increase 

€ 

ω  to move ”forward” towards the minimum. 

If E is positive, we must move ”backwards” to the minimum. 

 

First, a neural network is created and initialized (weights are set to small random numbers). 

Then, until the termination condition (e.g. the mean squared error of the ANN is less than a 

certain error threshold) is met, all training examples are ”taught” by the ANN. Inputs of each 

training example are fed to the ANN, and processed from the input layer, over the hidden 

layer(s) to the output layer. In this way, vector 

€ 

Yt  of output values produced by the ANN is 

obtained (third step). In the next step, the weights of the ANN must be adjusted. Basically, 

this happens when the weight update value, 

€ 

Δω , must ”move” the weight in the direction of 

steepest descent of the error function E with respect to the weight, or the partial derivative of 

E with respect to the weight: 

 

 

€ 

Δω = −η
∂E
∂ω ji

                 (1.4.18) 

 

where 

€ 

η is the learning rate that determines the size of the step that it is used for “moving” 

towards the minimum of E. If it is too small, then the convergence to optimal point may be 

small, leading to a slow convergence of ANN. Conversely, if it is too large, the algorithm may 

not converge at all. Usually 

€ 

η ∈ ℜ, 0 ≤η ≤1. 

 

Note that 

€ 

ω ji can influence the ANN only through net, i.e., the weighted sum of inputs for 

unit 

€ 

j , therefore, we can use the chain rule to write  

 

 

€ 

∂E
∂ω ji

=
∂E
∂net j

∂net j
∂ω ji

 .               (1.4.19) 
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Notes that  

  

€ 

∂net j
∂ω ji

= (net j )dω ji

(net j )dω ji = ω jz x jz
z
∑
 

 
 

 

 
 dω ji = ω j 0.x j0 ++ω jz .x jz( )dω ji

= 0.x j0 ++1.x ji ++ 0.x jz( )
= x ji .

 

So the equation (1.4.19) it is reduced to  

 

 

€ 

∂E
∂ω ji

=
∂E
∂net j

x ji

 
.                (1.4.20) 

 

 

The weights of hidden nodes are also updated. All the expressions are the same for both 

output and hidden nodes, with the exception of the derivation of 

€ 

δ j =
∂E
∂net j

. 

 

In the case of output nodes, 

€ 

net j , they can influenced ANN only through 

€ 

Yj . Similarly it was 

done above, with 

€ 

ω ji, we can chain rule to write: 

 

 

€ 

∂E
∂net j

=
∂E
∂Yj

∂Yj

∂net j
 .               (1.4.21) 

 

Note that  

  

€ 

∂E
∂Yj

=
1
2

(Tj −Yj )
2

z
∑

 

 
 

 

 
 dYj =

1
2
(T0 −Y0)

2 ++ (Tz −Yz )
2( )dYj

=
1
2
0 ++ (−2Tj + 2Yj ) ++ 0( )

= −(Tj −Yj )

∂Yj

∂net j
=
∂transfer(net j )

∂net j
= transfer' (net j ) .
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So the equation (1.4.21) it is reduced to  

 

 

€ 

∂E
∂net j

= −(Tj −Yj ).transfer' (net j ) .             (1.4.22) 

 

 

Considering the previous equations, the weight update 

€ 

Δω  for output nodes can be expressed 

as: 

€ 

Δω = −η
∂E
∂ω ji

= −η
∂E
∂net j

∂net j
∂ω ji

=

= −η
∂E
∂Yj

∂Yj

∂net j
x ji =

= −η −(Tj −Yj )( ) transfer' (net j )( )x ji =

=η Tj −Yj( ) transfer' (net j )( )x ji .

 

For hidden nodes, this derivation must take into account the indirect ways in which 

€ 

ω ji can 

influence the network outputs, consequently E. 

 

There are many improvements of this algorithm such as momentum term, weight decay etc.. 

However, multilayer feedback in combination with stochastic gradient descent learning 

algorithm is the most popular ANN technique used in practice. Another important feature of 

this learning algorithm is that it assumes a quadratic error function, hence it assumes there is 

only one minimum. In practice, the error function can have - apart from the global minimum - 

multiple local minima. There is a danger for the algorithm to land in one of the local minima 

and thus not be able to reduce the error to highest extent possible by reaching a global 

minimum. 
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Chapter 2 
 

 

 

2 – INPUT DATA, MODELS SELECTION AND RESULTS 
 

 

2.1 – DATA AND SOME DESCRIPTIVE STATISTICS 
 

 

The data, used in this study are extracted from Thomson Financial Datastream and correspond 

to stock price indexes for four countries namely: Germany (BD), Italy (IT), Greece (GR) and 

Portugal (PT). The observations are daily time series and are ranged from February 1st 1991 to 

February 1st, 2006, which yields a total of n = 4175 observations for each series.  

 

In the following table it is possible to see some descriptive statistics of the four time series, 

including the Jarque-Bera Test of Normality. We do reject the null hypothesis that the 

residuals are normally distributed in all time series. 

 

 
Figure 2.1: Descriptive statistics 
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As these time series represent stock price indexes, the original data were transformed using 

the natural logarithm, also in order to reduce the effect of outliers. One of the main advantage 

of such transformation is the stationary property; which permit to not lose the important 

information from trading, and it is also transforming the data to stabilize the variance. 

 

Thus, the daily time series were coded as: 

LOGBD= natural logarithm of the Stock price index of Germany: TOTMKBD(PI), 

LOGITL= natural logarithm of the Stock price index of Italy: TOTMKIT(PI), 

LOGGR= natural logarithm of the Stock price index of Greece: TOTMKGR(PI) and 

LOGPT= natural logarithm of the Stock price index of Portugal: TOTMKPT(PI). 

 

There are several testes for stationary, but the most encountered in the literature are those 

related with graphical analyses, correlograms and the unit root test 

 

Figure 2.2, depict the nonstationary shape of each one of the four time series, it is going to be 

analyse. These series varies randomly over time and there is no global trend or seasonality 

observed. All of them have a quite similar behaviour during all observed period, with a 

steepest decrease of Italy in the 90th justifying the socio-political conditions and with a 

consistent increasing for Greece after 90th which can be justified by the collapse of 

communism in the Balkanians. A decreasing for all of them after 2000 is justifying by the 

terrorist attacks on September 2001, as well as ,the subsequent terrorist attacks. 
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Figure 2.2: Graphical representation of natural logarithm of the four Stock price index. 

 

When regarding a correlogram we can find if a particular time series is stationary. For this 

purpose it is consider the correlogram of natural logarithm series (figure 2.3 and 2.4) and, the 

correlogram of first difference of natural logarithm series on figures 2.6 and 2.7, where it is 

shown the correlogram up to 30 lags for each time series. 
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Figure 2.3: The correlogram of LOGBD and the correlogram of LOGGR 

 

  
Figure 2.4: The correlogram of LOGITL and the correlogram of LOGPT 
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On Eviews software the Q stats reported in correlogram represents the Ljung-Box Q statistics, 

€ 

QLB , and their p-values are also reported there. Under the null hypotheses of no residual 

autocorrelation, 

€ 

QLB  is approximately distributed as chi-square distribution with m degrees of 

freedom, 

€ 

χm
2 . In practise, the selection of m is done to balance competing criteria. On one 

hand, m should not be too small because, after all, we are trying to do a joint test on a large 

part of autocorrelation function, and on other hand, as m grows relative to T, the quality of the 

distributional approximations we have invoked deteriorates. In practise, focusing on m in the 

neighbourhood of 

€ 

T  is often reasonable. (Diebold, F., 1997).  

 

€ 

QLB = T(T + 2)
ρ j
2

T − jj=1

s

∑ ,                 (2.1.1) 

 

where 

€ 

Q ~ χ 2(m) . 

 

Looking at the column labelled AC (which is the sample ACF) and the first diagram, labelled 

Autocorrelation, where the solid vertical line represents the zero axis., the most salient feature 

is that the autocorrelation is very high, even up to a lag of 30 quarters. Even when we choose 

a 200 laggs length (one-quarter of the length of the time series would be 1044, but the 

maximum allowed in the Eviews software is 200) the coefficient is bigger than 0,84. That is, 

it falls out of the confidence intervals, which is given by 

€ 

[−2 / T, 2 / T ], where T is the 

number of observations. Thus our confidence interval is 

€ 

[−2 / T, 2 / T ] = 

€ 

[−2 / 4175, 2 / 4175] = [−0.031, 0.031]. 

 

Other important fact that stands out from the correlogram is, the sample partial 

autocorrelation function (the column labelled PAC) which, after the first lag drops 

dramatically, and also the resulting correlogram (second diagram, labelled Partial 

Autocorrelation). The autocorrelation starts at a very high value and declines very slowly as 

the lag lengthens, which means that we are deal with a typical correlogram of a nonstationary 

time series. 

 

Once done the graphical observation and the correlogram evaluation, we can say that are 

integrated of order 1.  But we also can test the stationarity through the unit root test, which 

has recently become popular in econometrics, being quite efficient and easy to be interpreted. 
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There are several tests that allowed to aboard the unit root issue. One of the most well known 

is the Augmented Dickey-Fuller (ADF) test. That is based on the following equation: 

 

 

€ 

Δyt = β1 + β2t + (ρ −1)yt−1 + α iΔyt− i + εt
i=1

m

∑ ,               (2.1.2) 

 

where 

€ 

εt  is a pure white noise error term and where 

€ 

Δyt−1 = yt−1 − yt−2, 

€ 

Δyt−2 = yt−2 − yt−3, etc.. 

The number of lagged difference terms to include is often determined empirically, where the 

idea is to include enough terms so that (2.1.2) is serially uncorrelated. Usually it is used the 

Akaike Information Criterion, AIC, or the Schwarz or Bayesian Information Criterion, SBC, 

in order to have so many lags as need for 

€ 

εt{ }~WN

€ 

(0,σ 2). 

 

The ADF test follows the same asymptotic distribution as Dickey-Fuller (DF) statistic, (the τ 

(tau) statistic) and the null hypothesis is =1, that is, if there is a unit root – then the time 

series is nonstationary. The alternative hypothesis is that 

€ 

ρ  is less than 1, that is, the time 

series is stationary. The case of  being bigger than 1 is out of possible, because in that case 

the original time series will be explosive. 

 

In table 2.1 it is possible see the results of ADF test and the values of AIC and SBC for the 

three different forms (model with a drift, model with drift and with trend, and a model without 

both. 
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Table 2.1: The resume of Eviews results for the Unit Root Test 

 

Once again, in all time series we don’t reject, in levels, the null hypothesis, that is, there is a 

unit root – the time series are nonstationary, although we reject this hypothesis in first 

difference model. Similar results were obtain using Phillips-Perron test. 
 

We can also see this from the estimated ACF and PACF correlograms given in the Figures 2.5 

and 2.6, which illustrated the correlograms of the first differences series. Now we have a 

much different pattern for ACF and PACF. Despite, some of the ACF’s and of the PACF’s 

laggs seem statistically different from zero the majority are not statistically different from 

zero. 

 

It is denote DLOGBD for the first differences of LOGBD, the DLOGILT to denote the first 

differences of LOGITL, similarly DLOGGR for the first differences of LOGGR and finally 

DLOGPT to denote the first differences of LOGPT. 
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Figure 2.5: The correlograms of DLOGBD and of DLOGITL 

 

 
Figure 2.6: The correlograms of DLOGGR and of DLOGPT. 

 

In this way, after differencing the LOGBD, LOGGR, LOGITL and LOGPT time series, we 

obtain stationary time series.  
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2.2 – THE ARIMA(p,d,q) MODEL SELECTION 
 

 

If one extends the model by allowing the AR polynomial to have 1 as a characteristic root, 

then the model becomes the ARIMA model. As it was seen, the four time series are 

nonstationary and thid fact implies to use the first-difference form data. Now, the time series 

are integrated of order 1, i.e., I(1), which implies that we will have d=1 in ARIMA(p,d,q) 

model for all time series, even if we consider a model with drift and/or with trend or without 

one or both. 

 

The next step is to decide how many autoregressive (p) and moving average (q) parameters 

are necessary to give up an effective but still parsimonious1 model of the process. The 

correlograms given in last two figures enable us to find these parameters. The decision is not 

straightforward and in less typical cases requires not only experience but also a good deal of 

experimentation with alternative models. 

 

 

 

2.2.1 –ARIMA(p,1,q) model selection for the Stock price index of Germany 
 

 

On DLOGBD correlogram, present in Figure 2.5, it is possible to note significant correlation 

and PAC at lag 1. In Eviews, it was run the equation specified as DLOGBD C AR(1) MA(1) 

(which estimates the model with a nonlinear algorithm, and helps controlling for 

nonlinearities if they exist in the LOGBD) 

                                                
1 By a parsimonious model we mean that it has the fewest parameters and greatest number of degrees of freedom 
among all models that fit the data. In practice, the numbers of the p or q parameters are very rarely greater than 
2. 



C o m p a r a t i v e  s t u d y  o f  A N N  a n d  B o x - J e n k i n s  A R I M A  f o r  S t o c k  p r i c e  i n d e x e s  

 

 39 

    
Figure 2.7: ARIMA(1,1,1) estimation output 

 

Despite AR and MA roots are inside the unit circle, so the stability condition is satisfied, the 

coefficients are all insignificants. Then it was estimated the ARIMA(1,1,0) and 

ARIMA(0,1,1), in both cases only intercept was insignificant so it was removed from the 

models. 

 

 
Table 2.2: The Eviews values for the Information criteria for ARIMA(p,1,q) for DLOGBD 

 

Information criteria favor an ARIMA(2,1,2) specification although the marginal change is 

very small. These results are not showed for ARIMA(2,1,0) neither for ARIMA(2,1,1), 

neither for ARIMA(0,1,2) or ARIMA(1,1,2) because their estimation reveals insignificant 

coefficients. 
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Figure 2.8: ARIMA(2,1,2) estimation outputs for DLOGBD 

 

Although the small R-squared, here, all coefficients are significant and the stability is 

confirmed (AR and MA roots are inside the unit circle). 

Let 

€ 

Yt  denote the DLOGBD, then our tentatively identified ARIMA model is  

 

€ 

ˆ Y t = −0,5909Yt−1 − 0,8857Yt−2 + 0,6377εt−1 + 0,9098εt−2              (2.2.1) 

se = (0,0275)        (0,0211)       (0,0257)        (0,0189) 

  t =  (-21,48)          (-41,938)       (21,807)       (48,255) 

        

€ 

R2 =1,1%. 

 

 

Diagnostic testing for residual autocorrelation 

 

An requirement for an ARIMA time series model is that the estimated residual time series is 

approximately white noise.  
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Figure 2.9: Correlogram of residuals of ARIMA(2,1,2) model with DLOGBD 

 

Residual autocorrelations are pretty small, the correlograms of both autocorrelation and 

partial autocorrelation give the impression that the residuals estimated from ARIMA(2,1,2) 

are nearly a white noise. 

 

The Ljung-Box statistics and their p-values also look good. Thus, the null hypothesis that 

there is no residual autocorrelation is not rejected. The same result is obtain when applied the 

Breusch-Godfrey (LM) test, we do reject the null hypothesis (there is no serial correlation in 

error terms): 

 

 
Figure 2.10: The results of Breusch-Godfrey (LM) test 

 

Diagnostic testing for normality of residuals 

 

To facilitate the interpretation, for example for the parameter values, the estimated residuals 

should be approximately normal.  
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Although the previous tests shown that, the residuals are nearly white noise, we can also 

check the Jarque-Bera test, which is a goodness-of-fit measure of departure from normality, 

based on the sample kurtosis (K) and skewness (S). The test statistic Jarque-Bera (JB) is 

defined as 

 

€ 

JB =
n
6
S2 +

(K − 3)2

4
 

 
 

 

 
 ,                  (2.2.2) 

 

where n is the number of observations. 

 

The statistic JB has an asymptotic, 

€ 

χ2
2
, chi-square distribution with two degrees of freedom, 

and can be used to test the null hypothesis, that is, the data are from a normal distribution. The 

null hypothesis is a joint hypothesis of the skewness being zero and the excess kurtosis being 

0, since samples from a normal distribution have an expected skewness of 0 and an expected 

excess kurtosis of 0 (which is the same as a kurtosis of 3). 

 

 
Figure 2.11: Histogram and some statistics of residuals of ARIMA(2,1,2) model with DLOGDB 

 

The null hypothesis of Jarque-Bera test is rejected. The rejection of the normality null 

hypothesis may indicate that there are some outlying observations or that the error process is 

not homoskedastic.  

 

After several tests, there was no ARIMA(p,1,q) model better than the previous one, despite 

the rejection of normality. 
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2.2.2 –ARIMA(p,1,q) model selection for the Stock price index of Greece 
 

 

Several equations were run in Eviews in order to find which parameters p and q performed 

better the ARIMA(p,1,q) model for the DLOGGR time series.  

 

 
Table 2.3: The Eviews values for the Information criteria for ARIMA(p,1,q) for DLOGGR 

 

Although the ARIMA(1,1,2) looks good it is no better than ARIMA(2,1,0) because as it has 

an inverse autoregressive root of 0,99 and an inverse moving-average root of 0,99, so they are 

likely to be statistically indistinguishable from those of our earlier-estimate ARIMA(0,1,1), 

and this has worst values in AIC and SBC. 

 

  
Figure 2.12: estimation output of ARIMA(2,1,0) with DLOGGR 

 

Let 

€ 

Yt  denote the DLOGGR, then our tentatively identified ARIMA model is  

 

€ 

ˆ Y t = 0,156Yt−1 − 0,035Yt−2                 (2.2.3) 

se = (0,01546)  (0,01545) 
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  t =  (10,0892)   (-2,2659) 

     

€ 

R2 =2,3%. 

Very similar results were obtained on the diagnostic tests for residual time series, as it will be 

discussed in a subsequent chapter. 

 

 

 

2.2.3 –ARIMA(p,1,q) model selection for the Stock price index of Italy 
 

 

As we can see in the following table, the information criteria favor the ARIMA(1,1,0) and the 

ARIMA(1,1,2) to model the DLOGITL. After observing some points such as the correlogram 

of residuals, the results of Breusch-Godfrey (LM) and the Ajusted R-squared we decided for 

the ARIMA(1,1,2) model. 

 

 
Table 2.4: The Eviews values for the Information criteria for ARIMA(p,1,q) for DLOGITL 

 

For DLOGITL the fitted model was an ARIMA(1,1,2). 

 
Figure 2.13: ARIMA(1,1,2) estimation output with DLOGITL 
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Let 

€ 

Yt  denote the DLOGITL, then our tentatively identified ARIMA model is  

 

€ 

ˆ Y t = −0,8608Yt−1 + 0,086εt−1 + 0,9256εt−2                (2.2.4) 

se = (0,0695)       (0,0705)     (0,0016) 

 t =  (-12,3906)    (13,1256)      (5,5232) 

       

€ 

R2 =0,7%. 

 

Once again, the results obtained on the diagnostic tests for residual time series were, very 

similar to the previews. 

 

 

 

2.2.4 – ARIMA(p,1,q) model selection for the Stock price index of Portugal 
 

 

In the case of Portugal Stock price index it appears to be appropriated the use of an 

ARIMA(1,1,2) and an ARIMA(1,1,0) model as the best in terms of the information criteria. 

 

 
Table 2.5: The Eviews values for the Information criteria for ARIMA(p,1,q) for DLOGPT 

 

After observing some points such as the stability condition, that is satisfied in both of the 

referred models, we decided for the ARIMA(1,1,2) model which presents a bigger Adjusted 

R-squared. 
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Figure 2.14: ARIMA(1,1,2) estimation output with DLOGPT 

 

Let 

€ 

Yt  denote the DLOGPT, then our tentatively identified ARIMA model is  

 

 

€ 

ˆ Y t = −0,7821Yt−1 + 0,9229εt−1 + 0,1414εt−2                (2.2.5) 

se = (0,1076)       (0,1073)     (0,0171) 

 t =  (-7,2701)       (8,5982)      (8,2574) 

       

€ 

R2 =2,2%. 

 

Diagnostic tests for residual time series reveal very similar results to the three previews 

models. 

 

 

 

2.3 – THE ANN MODEL SELECTION 
 

 

After using Eviews in Box-Jenkins ARIMA model, we will use Matlab in ANN modelling, 

through it’s M-files, which are commands of Matlab that are stored as ordinary text files.  

 

An M-file can be either a function with input and output variables or a list of commands. That 

was what S. Mohammadi and H. Abbasi-Nejad, both from faculty of Economics of University 
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of Tehran, drew in ANNEARLY M-file.  

This M-file forecasts time series with minimum Root Mean Squares Error (RMSE) used as 

stopping criteria in the network. The RMSE is a kind of generalized standard deviation. It 

pops up whenever you look for differences between target and the output. It is determined by 

the root square of Mean Square Error (MSE). Smaller values of RMSE indicate higher 

accuracy in forecasting. 

 

A measure of dispersion between the target and the output is the MSE:  

 

 

€ 

MSE =
1
N

(Tt −Yt )
2

t=1

N

∑ ,                  (2.2.6) 

 

where 

€ 

Tt  is the actual or targeted output value of the 

€ 

t th  iteration and, 

€ 

Yt  is the computed 

output also of the 

€ 

t th  iteration. 

 

 

Through newff, MATLAB command’s, it is created a feedforward backpropagation network. 

This command is defined as in (2.2.7): 

 

 
  

€ 

newff = (Y, S1 S2…Sn[ ], TF1TF2…TFn{ },BTF,BLF,PF)             (2.2.7) 

where 

• Y is a time series that has a vertical vector form. 

• 

€ 

Si is the size of the 

€ 

ith  layer, for 

€ 

n layers. 

• 

€ 

TFi  is the transfer function of the 

€ 

ith  layer, for 

€ 

n layers. It is used the 'tansig' , transfer 

function by default. 

• 

€ 

BTF  is the backpropagation network training function (default = 'trainlm'). 

• 

€ 

BLF is the backpropagation weight/bias learning function (default = 'learngdm'). 

• 

€ 

PF is the performance function (grafic), by default is used 'mse' and returns an 

€ 

n  layer 

feed-forward backpropagation network. 

 

In ANNEARLY M-file the authors initialized the net, as a function dependent of the number 

of lags (lag) and hidden layers (lay), with the subsequent command. The user, such as, the 

learning rate parameter, defines these two arguments. 
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€ 

newff = (PR(1: lag,:), lay 1[ ], 'tan sig',' purelin'{ },' trainlm')             (2.2.8) 

where  

• 

€ 

PR(1: lag,:) define the limits of entire pattern,  

• 

€ 

lay 1[ ] define the number of neurons in each layer, 

• 

€ 

' tan sig',' purelin'{ } are the transfer functions and 

• 

€ 

' trainlm'  is the training function 

 

The remaining training parameters were defined as follows: 

• Ratio to increase learning rate =1,05 

• Ratio to decrease learning rate =0,7 

• Maximum number of epochs to train=1000 

• Epochs between displays = 100 

• Performance goal = 

€ 

1e − 5 

 

By the last, the user also defines the percentage of observations for training set and for be 

forecasted and finally the learning rate.  

 

 

Here, in ANN, as we have to define a percentage of observations for training, we decided to 

have the same number of observations, 4175, as we have in ARIMA for training, so we had to 

increased the series in 464 observations. Thus, our input series have now 4639 observations, 

90% for training and 10% for comparison in forecasting. 

 

The learning rate is supposed constant throughout training. The performance of the algorithm 

is very sensitive to the proper setting of the learning rate. If the learning rate is set too high, 

the algorithm can oscillate and become unstable. If the learning rate is too small, the 

algorithm takes too long to converge. 

 

The selection of hidden layers is more like an art rather than mathematical method. When the 

number of hidden layers units is small, the correlation of the output and input cannot be 

studied well and the errors increased. Moreover, when the number of hidden layers units is 

more than adequate, even an irrelevant noise is studied to the correlation of both, and the error 
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grows accordingly. There are some methods for obtain the number of hidden layer units, 

however, there is no general solution for this problem (Kermanshahi, et al., 2002). Therefore, 

we decided to start with one hidden layer units and go to fifteen layers units. 

Several models were run for the four series, considering different number of hidden layers, 

and different numbers of lags, through annearly: 

 

annearly(y, maxlag, nhiden, trset, HPF,lr) 

 

where 

• y is our time series  

• maxlag  is the maximum number of lag that should be entered in model. 

• nhiden, is the number of hidden layer units. 

• Trset match to our 90% of observations for training 

• HPF match to our 10% of observations that should be forecasted and  

• lr  is the learning rate. 

 

 

 

2.3.1 – Feedforward backpropagation network for the stock price index of Germany 
 

 

Beginning with one unit/neuron in the hidden layer, the ANNEARLY M-file was run 

considering one and then two lags, with different learning rates. 

 

Considering the subsequent results, where were run forty-two times the ANNEARLY M-file, 

thus it were produced the same forty-two networks. The lowest MinRMSE in each run is 

showed in the following table, under the number of units/neurons in the hidden layer. In blue, 

we have the lowest MinRMSE of all forty-two runs. 
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Table 2.6: Forecasting results of ANN model for LOGBD time series 

 

As we can see in the previous table, the Minimum RMSE (minRMSE) doesn’t change a lot 

when considered different lags and different learning rates. Although the lowest MinRMSE is 

obtained when consider the model with fifteen units in the hidden layer, one lag and the 

learning rate equal to 0.01. 

 

Through these results we have the best model to forecast the LOGBD time series when we 

have the subsequent parameters: 

annearly(LOGBD, 1, 15, 90, 10, 0.01) 

 

It is find a very good performance of the ANN to predict the LOGBD series, between 

February 1st, 2006 and October 12th, 2007, 464 by using those parameters. 

 

The Figure 2.15, show us that there is a minimum error between the original series (yy) and 

the forecasted one (yhatopt). Thus the residuals are very small, as we can see in the following 

figure, the majority are near to zero, falling into the interval 

€ 

−0.05, 0.05] [. 

 

 
Figure 2.15: Forecasting outputs of LOGBD trough ANN – in Matlab 

 

Although ANN does not oblige to have stationary time series, as in ARIMA, it was decided to 
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run the ANNEARLY M-file considering 

€ 

Y = DLOGBD, that is, the same input time series as 

it was used in ARIMA. 

 

 
Table 2.7: Forecasting results of ANN model for DLOGBD time series 

 

As we can see, in every networks the value of minRMSE is higher when considering the 

stationary time series, what is obvious because when we differencing a time series we lose 

some of the information wider laying in the original data. 

 

Thus the accuracy obtained between the original series, 

€ 

Y = DLOGBD, (yy) and the 

forecasted one (yhatopt) is much lower than it was when considering 

€ 

Y = LOGBD , as we can 

confirm regarding the Figure 2.16. Consequently the residuals are falling into a bigger 

interval, with some escape tendency. 

 

 
Figure 2.16: Forecasting outputs of DLOGBD trough ANN – in Matlab 
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2.3.2 – Feedforward backpropagation network for the Stock price index of Greece 
 

 

For the case of Greece, the ANNEARLY M-file was run considering the same parameters as 

we used before, thus it were produced the same forty-two networks as for 

€ 

Y = LOGBD : 

 

 
Table 2.8: Forecasting results of ANN model for LOGGR time series 

 

The minRMSE, illustrated in Table 2.8, was obtained when considering the network with a 

learning rate of 0.01, fifteen units in the hidden layer and two lags. Once more the minRMSE 

doesn’t change a lot when considered different lags and different learning rates. 

 

Regarding Figure 2.17 it is possible to notice that the residuals are too small, also quite small, 

converging to zero. In this way, there was obtained a good accuracy between the original 

series, 

€ 

Y = LOGGR , (yy) and the forecasted one (yhatopt).  
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Figure 2.17: Forecasting outputs of LOGGR trough ANN – in Matlab 

 

 

In order to have the same input time series as we had in ARIMA, the same forty-two networks 

were generated with the differencing time series, 

€ 

Y = DLOGGR , with the following results: 

 

 
Table 2.9: Forecasting results of ANN model for DLOGGR time series 

 

The value of minRMSE is always bigger when considering 

€ 

Y = DLOGGR  instead of 

€ 

Y = LOGGR  in the network with the same parameters. Which means that there is a lower 

accuracy in forecasting, as it is possible to confirm in the following figure. 
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Figure 2.18: Forecasting outputs of DLOGGR trough ANN – in Matlab 

 

 

 

2.3.3 – Feedforward backpropagation network for the Stock price index of Italy 
 

 

Once again, using the same parameters, the forty-two networks were now generate with 

€ 

y = LOGITL . 

 

 
Table 2.10: Forecasting results of ANN model for LOGITL time series 

 

Regarding these results we find the best model to forecast the LOGITL time series when we 

consider five units in the hidden layer, two lags and the learning rate equal to 0.1: 

annearly(LOGITL, 2, 5, 90, 10, 0.1) 
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Once again the residuals obtained are very close to zero. In this way, there was obtained a 

good forecasting accuracy: 

 

 
Figure 2.19: Forecasting outputs of LOGITL trough ANN – in Matlab 

 

 

Different results were obtained when considering, in the same networks, the differencing time 

series of LOGITL, 

€ 

Y = DLOGITL . This means higher values for minRMSE, consequently 

worst evaluation on the forecasting results accuracy. 

 

 
Table 2.11: Forecasting results of ANN model for DLOGITL time series 
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Figure 2.20: Forecasting outputs of DLOGITL trough ANN – in Matlab 

 

2.3.4 – Feedforward backpropagation network for the Stock price index of Portugal 
 

 

In order to obtain the best network to forecast LOGPT, we compared the minRMSE achieved 

in each of the forty-two networks: 

 
Table 2.12: Forecasting results of ANN model for LOGPT time series 

 

It was select the network with fifteen units in the hidden layer, one lag and a learning rate 

equal to 0.01, as the best network to forecast the LOGPT time series: 

annearly(LOGPT, 1, 15, 90, 10, 0.1) 

 

Figure 2.12, shows the forecasting results using the network with lower value of minRMSE, 

and the behavior of the residuals. 
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Figure 2.21: Forecasting outputs of LOGPT trough ANN – in Matlab 

 

Once again, it is obtained a good performance on the forecasting results using a feedforward 

backpropagation network for the 

€ 

Y = LOGPT  time series. 

 

In order to have the same input time series as we had in ARIMA, the same forty-two 

feedforward backpropagation networks were generated with the differencing time series, 

€ 

Y = DLOGPT , with the following results: 

 

 
Table 2.13: Forecasting results of ANN model for DLOGPT time series 

 

The minRMSE is always higher considering the differencing time series, 

€ 

Y = DLOGPT , 

when compared to the minRMSE obtained with the 

€ 

Y = LOGPT  time series. Therefore the 

results on the forecasting accuracy are worst, as can be seen in Figure 2.20. 
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Figure 2.22: Forecasting outputs of DLOGPT trough ANN – in Matlab 

 
 
 
 
 



C o m p a r a t i v e  s t u d y  o f  A N N  a n d  B o x - J e n k i n s  A R I M A  f o r  S t o c k  p r i c e  i n d e x e s  

 

 59 

Chapter 3 
 

 

 

3 – DISCUSSIONS AND CONCLUSIONS 
 

 

In this work it has been proposed to compare the prediction accuracy between the classical 

ARIMA model and the Artificial Neural Networks.  

 

The predictability of financial time series, such as stock prices indexes is a complex task, due 

to several reasons. 

 

Considering all mentioned reasons, during this work perhaps the most controversial is the fact 

that financial time series are usually very noisy, that is, there is a large amount of random 

(unpredictable) day-to-day variations. The events, such as interest rate changes, 

announcements of macroeconomic news as well as political events are random and 

unpredictable and, contribute to the noise in the time series.  

 

 

 

3.1 – THE ARIMA RESULTS 
 

 

To identify the appropriate ARIMA model for a time series, it is necessary identifying the 

order(s) of differencing needing to stationarize the series. As the four time series were 

integrated of order 1, our input time series, were the first differenced series of the four 

logaritmized stock price indexes. 

 

In order to select an ARIMA for each one of the four differenced logaritmized stock price 

indexes, some tests were taken in account to testing the signification of coefficients and to test 

the residuals. Then two evaluation criteria were considering, the Akaike’s information 

criterion (AIC) and the Bayes information criterion (BIC) to evaluated the best ARIMA.  
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Both R-squared and Ajusted R-squared obtained, in each identified ARIMA model for each 

one of the four differenced and logaritmized stock price indexes, were too low. Some tests 

applied to the estimated residuals show that they are not white noise, but close to white noise, 

the models obtained are not satisfactories, and despite of several tries to respecify the models, 

the results were more or less the same, so we couldn’t use any ARIMA model to forecast with 

the proposed accuracy. 

 

When a time series is differencing there are a loss of valuable information. A valuable long-

term relationship, between the endogenous variable and explanatory variables, is lost. Such 

long-run relation can only be stated in the level form and not in first-difference form. This 

increases the hard task of finding a satisfactory ARIMA model, since it seems that a high rate 

of nonlinearity should be considered in a more realistic model. 

 

Due to the noisy nature of financial time series, nonstationarity and nonlinearity it can be even 

harder to forecast a stock prices index using linear models, such as ARIMA. ARIMA models 

are linear models, but in the real-word time series are rarely pure linear combination. 

 

 

 

3.2 – THE ANN RESULTS 
 

 

The ANN model used in this study was a feedforward network with a backpropagation 

algorithm. That is one of the most commonly used by its valuable properties, which are seen 

as big advantages.  

 

The backpropagation training is mathematically designed to minimize the RMSE across all 

training patterns. RMSE had been used as a performance measure. This measure would allow 

to compare the performance between ARIMA and ANN models, if some ARIMA model were 

considering satisfactory. 

 

In the case of the neural network, the proceeding for finding the best network design is 

somewhat arbitrary. There is no known systematic procedure for setting the parameters values 

used to design the network. 
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Thus it was experimented to forecast each one of the four logaritmized stock price indexes 

with forty-two different networks designs, considering different units/neurons in the hidden 

layer, three different learning rates and considering a maximum of two lags. 

 

As ANN models can learn from experience, generalize and “see through” noise and 

nonstationarity. They are robust enough to recognize patterns, which have been obscured by 

noise. 

 

The “first step” was to evaluate the forty-two networks with the four logaritmized stock price 

indexes. Latter, as in ARIMA the input time series must be stationary, it was decided to 

evaluate, also, the same forty-two networks with the four differenced logaritmized stock price 

indexes. 

 

Considering the “first step”, we can conclude that the values of the RMSE obtained in each 

one of the time series was very similar. In the following table, we can see the minimum and 

the maximum value of the RMSE, considering all forty-two networks, for each one of these 

time series.  

 

 
Table 3.1: The minimum and the maximum value of the RMSE, considering all forty-two networks 

 

Independent of the learning rates, the number of lags considered or, the number of neurons 

take it in account in the hidden layer, the value of minRMSE does not change more than 

3,7%. Despite it is being possible notice a lower value of RMSE when considered 10 or 15 

neurons than when considered less neurons in the hidden layer, the difference of values is 

smaller. 

 

In the previous Chapter, were showed some figures with the forecast accuracy considering the 

best network design, for each one of the four previous time series. As it was reported, there is 

a good forecast accuracy in all of them. There is a very satisfactory match between the 
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original series (yy) and the forecasted one (yhatopt). Therefore, the residuals are very small in 

all four forecasted time series, the majority of the residuals are close to zero, falling into a 

very small interval 

€ 

−0.05, 0.05] [. 

 

 

Similar to other forecasting methods, ANN have problems and limitations. The accuracy of 

the prediction greatly depends on historical data. Thus, as it was already mentioned, when a 

time series is differencing there are loss of valuable information, then even using ANN 

models the prediction accuracy must be worst. 

 

This can be notice when were considered as input each one of the four differenced 

logaritmized stock price indexes. Where the value of the RMSE increase near 900%, when 

compared to the value obtain in the same networks when the input time series are not 

differenced time series. 

 

It is possible to observe this increase, when we compare the values of the Table 3.1 with the 

values of the Table 3.2. 

 

 
Table 3.2: the minimum and the maximum value of the RMSE, considering all forty-two networks 

 

Also here, the value of minRMSE does not change a lot, independent of the learning rates or 

the number of lags considered, or the number of neurons takes in account in the hidden layer. 

Therefore, with these input time series, it was not possible to find a good network design in 

order to have an acceptable prediction. 
 

To have this perception we only need to regard the figure, with the forecast accuracy 

considering the best network design, for each one of the four previous time series reported in 

the previous Chapter. There are big differences between the original series (yy) and the 

forecasted one (yhatopt). Therefore the residuals are much higher in all four forecasted time 

series, the interval where the residuals falling into is also large.r 
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The results for the ANN model used in this study have demonstrated that ANN methods can 

be used effectively in prediction of a stock price index. They seem to perform very well with 

financial data and can make great contributions to provide an effective instrument for 

investors to hedge against potential market risks. Creating new profit making opportunities 

for market speculators and arbitrageurs. This could also be a powerful instrument to many 

enterprises such as banks and insurances that deal day by day with stock market indexes.  

 

 

 

3.3 – ARIMA VERSUS ANN AND FUTURE WORKS 
 

 

In this study it was expected to have an accurate forecasting for a future period using the both 

models in consideration. But, due to the previous referred reasons, it was impossible to obtain 

validate forecast using ARIMA models. In spite of the obtained results this study aware us to 

other important aspects. 

 

While ANN requires a good amount of observations for training, to guarantee an appropriated 

learning in order to recognize a wide range of patterns, ARIMA requires stationarity. This 

could be controversial, financial data are greatly influenced by economical, political, 

international, and even natural events, thus it is a hard task to find a large period with 

stationarity in such data. The input data of this study encloses 4175 observations (15 years), 

and it was prove that the four input time series were not stationaries. 

 

Otherwise the ARIMA’s methodology foresees the nonstationarity, being its first step, apply 

the differencing operator to the time series until it becomes stationary. However, by 

differencing there is a loss of valuable long-term relationship between the endogenous 

variable and explanatory variables. And with 4175 observations in the input time series this 

loss becomes even bigger; as it is possible to verify because, also, with ANN it was not 

achieved an acceptable prediction considering as input the differenced time series. 

 

An alternative could be to reduce the number of observations in the input time series, in order 
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to find a period with sufficient observations for ANN training, and to reduce those loss of 

valuable information when applying the differencing operator in ARIMA. This could be 

taking in account in future works. 

 

Another suggestion to future works, with intent to solve those loss of information, would be 

find out whether endogenous variable and explanatory variables are cointegrated. 

Cointegration currently enjoys high acclaim in econometric modeling literature.  

 

 

In the course of the realization of this thesis, in spite of some founded difficulties, some 

knowledge was consolidated and other new knowledge was acquired. During the literature 

review, it was possible to be aware to the sort of models that can be used with this kind of 

data, as well as, the advantages and the disadvantages of the use of those models. It was 

notice that, in the recent papers, it is given most importance to nonlinear models and to new 

models that combine the classical techniques with the modern ones, in the financial field. As 

the financial field is an important field in actuarial working area, it is significant to be 

conscious of the development of new techniques and feel, in practise, the difficulties and the 

advantages between the classical techniques and the recent ones. 
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