Skip navigation
Logo
User training | Reference and search service

Library catalog

Retrievo
EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/12329
acessibilidade
Title: On clustering stability
Authors: Amorim, Maria José de Pina da Cruz
Orientador: Cardoso, Maria Margarida Guerreiro Martins dos Santos
Keywords: Adjusted índices of agreement
Clustering evaluation
External evaluation
Clustering stability
Clusters
Análise de Clusters
Estabilidade
Modelos de concordância
Issue Date: 2016
Citation: AMORIM, Maria José de Pina da Cruz - On clustering stability [Em linha]. Lisboa: ISCTE-IUL, 2016. Tese de doutoramento. [Consult. Dia Mês Ano] Disponível em www:<http://hdl.handle.net/10071/12329>.
Abstract: This work is dedicated to the evaluation of the stability of clustering solutions, namely the stability of crisp clusterings or partitions. We specifically refer to stability as the concordance of clusterings across several samples. In order to evaluate stability, we use a weighted cross-validation procedure, the result of which is summarized by simple and paired agreement indices values. To exclude the amount of agreement by chance of these values, we propose a new method – IADJUST – that resorts to simulated crossclassification tables. This contribution makes viable the correction of any index of agreement. Experiments on stability rely on 540 simulated data sets, design factors being the number of clusters, their balance and overlap. Six real data with a priori known clusters are also considered. The experiments conducted enable to illustrate the precision and pertinence of the IADJUST procedure and allow to know the distribution of indices under the hypothesis of agreement by chance. Therefore, we recommend the use of adjusted indices to be common practice when addressing stability. We then compare the stability of two clustering algorithms and conclude that Expectation-Maximization (EM) results are more stable when referring to unbalanced data sets than K means results. Finally, we explore the relationship between stability and external validity of a clustering solution. When all experimental scenarios’ results are considered there is a strong correlation between stability and external validity. However, within a specific experimental scenario (when a practical clustering task is considered), we find no relationship between stability and agreement with ground truth.
Este trabalho é dedicado à avaliação da estabilidade de agrupamentos, nomeadamente de partições. Consideramos a estabilidade como sendo a concordância dos agrupamentos obtidos sobre diversas amostras. Para avaliar a estabilidade, usamos um procedimento de validação cruzada ponderada, cujo resultado é resumido pelos valores de índices de concordância simples e pareados. Para excluir, destes valores, a parcela de concordância por acaso, propomos um novo método - IADJUST - que recorre à simulação de tabelas cruzadas de classificação. Essa contribuição torna viável a correção de qualquer índice de concordância. A análise experimental da estabilidade baseia-se em 540 conjuntos de dados simulados, controlando os números de grupos, dimensões relativas e graus de sobreposição dos grupos. Também consideramos seis conjuntos de dados reais com classes a priori conhecidas. As experiências realizadas permitem ilustrar a precisão e pertinência do procedimento IADJUST e conhecer a distribuição dos índices sob a hipótese de concordância por acaso. Assim sendo, recomendamos a utilização de índices ajustados como prática comum ao abordar a estabilidade. Comparamos, então, a estabilidade de dois algoritmos de agrupamento e concluímos que as soluções do algoritmo Expectation Maximization são mais estáveis que as do K-médias em conjuntos de dados não balanceados. Finalmente, estudamos a relação entre a estabilidade e validade externa de um agrupamento. Agregando os resultados dos cenários experimentais obtemos uma forte correlação entre estabilidade e validade externa. No entanto, num cenário experimental particular (para uma tarefa prática de agrupamento), não encontramos relação entre estabilidade e a concordância com a verdadeira estrutura dos dados.
Description: JEL Classification: C100; C150; C380
Peer reviewed: yes
URI: http://hdl.handle.net/10071/12329
Thesis identifier: 101374305
ISBN: 978-989-8862-01-3
Designation: Doutoramento em Métodos Quantitativos
Appears in Collections:T&D-TD - Teses de doutoramento

Files in This Item:
acessibilidade
File Description SizeFormat 
TESE-MariaJoseAmorim.pdf19.73 MBAdobe PDFView/Open    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.