Skip navigation
User training | Reference and search service

Library catalog

Content aggregators
Please use this identifier to cite or link to this item:

Title: Relative numerical ranges
Authors: Bracic, J.
Diogo, C.
Keywords: Numerical range
Issue Date: 2015
Publisher: Elsevier
Abstract: Relying on the ideas of Stampfli [14] and Magajna [12] we introduce, for operators S and T on a separable complex Hilbert space, a new notion called the numerical range of S relative to T at r is an element of sigma(vertical bar T vertical bar). Some properties of these numerical ranges are proved. In particular, it is shown that the relative numerical ranges are non-empty convex subsets of the closure of the ordinary numerical range of S. We show that the position of zero with respect to the relative numerical range of S relative to T at parallel to T parallel to gives an information about the distance between the involved operators. This result has many interesting corollaries. For instance, one can characterize those complex numbers which are in the closure of the numerical range of S but are not in the spectrum of S.
Peer reviewed: yes
DOI: 10.1016/j.laa.2015.07.037
ISSN: 0024-3795
Accession number: WOS:000361857100012
Appears in Collections:DM-RI - Artigos em revistas científicas internacionais

Files in This Item:
File Description SizeFormat 
Relative_numerical_ranges.pdfPós-print1.55 MBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.