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Relative numerical ranges
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Avmadas, TS0 Liasbos, Portugal, and Center for Mothematicnl Anelpas, Geometry,
and Dynatice] Spstems, Mathematies Deparlment, Talifule Superior Tenion,
Undrersidade de Lisboa, Av. Rewises Pais, N300 Lisbog, Portugal

Abstract
Relving on the ideas of Stampfli [14] and Magajna [12] we introduce, for

operalors Soand T ona separable complex Hilbert space, a new nolion called
the nmmerical range of S relative to T at r € of|T]). Some properties of
Lhese numerical ranges are proved. In particular, it is shown that the relative
mumerical ranges are non-empty convex subsets of the closure of the ordinary
numerical range of 5. We show that the position of zero with respect to the
relative numerical range of 5 relative to T at |77 gives an information about
the distance between the involved operators. This result has many interesting
corollaries. For instance, one can characterize those comples numbers which

are in the closure of the nnmerical range of 5 but are not in the spectrom of
5.

Kegmords:  numerical range
Hipar MSC: ATAL2

1. Introduction

Let 3 be aseparable complex Hilbert space. We denote by %% Lhe unit
aphere of A and by B(.#) the Banach algebra of all bounded linear operators
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on #. The numerical range of § € B(.#) is W(S5) = {{Sx,z); 1€ .}
It is well-known that W({5) 18 a non-empiy convex subset of the dise {= €
C; |z| = |8}, The reader is referred to [8, 9, 10] for details about the
numerical ranges. Many important properties of an operator are encoded in
its numerical range, For instance, (&), the spectrum of S, 18 a subset of
W(5), the closure of the numerical range. 1o this paper, we are interested in
some parts of W{5) which are specified by an operator T' € B(.#7). We call
Lhem relative numerical ranges. They carry some nselul information about
the relation between 5 and 7. We wonld like to point ont that oor stady
partially relies on the ideas of Stamplli [14] and Magajna [12].

The article is divided into two parts. In the flirst part, Section 2, we
give a motivation for our definition of the relative numerical ranges and then
wi explore their propertics. Among them the most important s convexily
( Theorem 2.6). In the second part of the paper, Section 3, we show that the
position of zero with respeet to a relative munerical range gives an informa-
tion about the distance between the involved operators. The main result of
Lhe section is Theorem 3.3 which extends a result proved by Stamplli [14] and
therefore its proof is a modification of Stampfli’s ideas, see also [6, 12], The-
orem 3.3 has several interesting corollaries, one of them is a characterization

of the set WI{S) Y a(8) lor any 5 € B{.#).

2. Definition of the relative numerical ranges and their properties

To motivate our delinition of the relative nomerical ranges, we begin with
a basic property of the ordinary mumerical range: the numerical range of a
compression of 5 Lo a closed sulspace of #° s contained in W(S). More
precisely, if ¥ is a closed subspace of #° and P is the orthogonal projection
onto J, then W(PS|¢) © W(S). The bllowing lemma gives a deseription
of W{PS| ) which is the key idea in our definition of the relative numerical
FalgEes.,

Lemma 2.1, Let ¥ & [0} be a closed subspace of 2 and P be the orthog-
onal projection onto F, Then, for every 5 € B(.3#7),

W(PS|lel={AcC Fir,)", C % : lm || Pz, = || P
fa—bhid _Ell
and  lim (SF,, 7a} = Al (1)



Proof. Assume Lthat A € W{PS|#). Then there exists a sequence (A )02, ©

WS|4 ) such that A = lim A,. Henee there is a sequenee (), C f?'r
T—+o
such that A, = (PS5| gz, 2, ) for every n € M, Sinee Pr, = &, and therefore
[|[Pra| = 1 = ||P|, for every e, we conclude that lim ||Px, || = | £P] and
LR e u]

A= lim (PS|yrn, o0) = l'ﬂu {5 En, Tn).

To prove the opposite inclusion, suppose that there exists a sequence

(Taloey © #% such that ]i;n [|P2e|| = ||P]| and l'ﬂﬂ 159Fa, Tn) = A, Each
Fa—00) mn (e _u]

vector x, can be written as x,, = y, + 2., where y, € . and 4, € # L. Since

llirall® + [|ze]l* = 1 and 1 = lu:u ||I’J',L|| = ]m:l "Jn” we have |.I]Il |zall = D

Without loss of generality 'P-‘i." I!I]H].-' ARKNITE lhﬂ.l 3 < [l fﬂr -l.'“.-‘t"rj’ n e M.
Heme

|A =18 m II'IItn»-II}I

< A = G (Sze, zall + ol (Sth, 20} + {520, ga} + (S, 20|
< |A = {52, £a)| + [{(Fin, Ta) - F:"!{HJ'-'MIHH t - 35| zall
< A = {Sxw, x| + A1 S| 2] + 12012

< A = {5, 2] 4 16]S ]| 2]l

which gives

[z B * N3l

lim A — (Spe, 2| < Jim (JA — {Sag, 2] + 16]S])]|2]]) =

It is clear that |:||:.. "]“_l is a sequence in 2y which means that {qllhl “i'-"ﬂ:l [
W{PS| %) for every n € M. It follows that A € W{FPS|¥). O

The set on the right hand side of (2.1) has meaning if & is replaced by
an arbitrary T € B(.#). Let

Wr(8)={AcC; J(x,) -, C |.I]Il | T = || 7|

(2.2)
rmd lim (Sxy, za} = A}
F—HDo
Following Magajna [12], we call Wo(S) the numerical range of S relative to T
In the case 5 = T, (2.2) reduces o the Stamplli's maximal numerical range
of T', see [14]. 'Du the other hand, Wi(S) = WiS), where I is the identity
operator on #°. Actually, it is clear from the delinition that Wr(8) = W(5)

[or any operator T which is a scalar multiple of an isemelry.
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Recall that a number A € © s an approximate eigenvalue of T € B{.#)
il there exists (5] © %%, called a sequence of approximate ecigenvectons

of T at A, such that lim ||[Tx, — Az, || = 0. It is obvious that the set o, (1)
(e u)

ek
ol all approximate eigenvalues of T is a part of the spectnun o{T7) and it

is well-known that da(T), the boundary of (1), is a subset of a,,(T). In
particular, if T is a selladjoint operator, then o(T7) = a,,(T7).

Let |T'| be the unigue positive sgquare oot of 77 and T = V(T be
Lhe unigue polar decompaosition of T which satishes the additional condition
ker(V) = ker(|T)), see [9, Problem 134]. Here Vs a partial sometry whose
initial space is ker{V' )4 and the final space is im{V) = ker(V*}+, the initial
space of V*_ 1L s not hard to see that ker(T) = ker{|T)) and ||7x|| = ||[T]=
for every @ € A, It follows that ||T) = |7 and m(T) = m{|T|), where
1) = Wl {||Tx|; x € .%%} is the minimum modulus of 77

In the definition (2.2) of the numerical range of 5 relative to T, norming
sequences of T oare used, Le., (75)7, © % such that Jilﬂ:ﬂ”ﬁf'rﬂ I = ITl-
As the following lemma shows, the norming sequences of T are sequences of
approximate eigenvectors of |77 at ||77)).

Lemma 2.2, Let T € B(3#) and (1o © %,

(il If (e, )02, 15 a norming sequence of T, then if 45 a sequence of approz-
frmale cigenvectors of |T) at |77,

(1) If u“'.ED |Txg|| = mi(T), then (2,)72, 45 a sequence of approrimate
cigenvectors of |T) al m(T).

i) If (za)oe, is @ sequence of approzimate eigenvectors af [T al v £
a([T]), then “lilhin'f'r,," =r.

Proof. T =0, then [T = 0 amd |7 = m(T) = 0. It is olwious that
in this case claims (i}-{iii) hold for every sequence (z,)07, © %, Assume
therefore that T 4 ().
(i) Note that ||T*1 — |T')° is a positive operator. Let /|| T4 — |T)¢ be
its positive square root. I (2,)2 , © %% is such that lim [T, = |7,
LI J e u]

then

lim [[VTIPT = TP all* = lim ((|T1PF = [T )an, )

n—ko a0

= |7 = lim [T, [[* = 0.
fa—hxd
It follows that
- a2 . TG E BT T 1TE - -

T (127 — [77) el < |W/ITIRT = [P timn [|3/TTTRT = [T 2] = 0.

1



Since | T)|f + |7 s an invertible operator and
NOTNE = 1Tl < WL A T TN = 1T )l

holds for every x, we conclude that lim |||T)2.—||T||#|| = 0. Henee, (2,055,
m—Foo

i# a sequence of approximate eigenvectors for [T at ||T7).

{ii) The prool of this assertion is similar (o the prool of [1); one has Lo
observe that now |T1" — mi(T) T is a positive semidefinite operator,

1] Assume that (#,)™ , 15 a sequence of approximate elgenvectors for

el =1 1 i &

T| at r. Since | ||Tza|| — v = | |T|xall — |rzalll < |||Tee — rzq|| holds for
I

every &, we have lim | T, | = v O
el

Remark 2.3. The opposite implication in Lemma 2.2 (iii), i.e., a statement
similar to (1) and (i), does not bold in general for + € o{|T)) i+ £ |7
and r # m(T), For instance, let T € B(#) be an operator such that
m(T) < |[T]. Then the closure of the numerical range of 77 = |T)* is
WI|T]*) = [m(T),|T)*]. Henece, for every ¢ € (m(T),||T)|). there exists
a vector 1, € . such that {|TPr, o) = % which gives ||[Tx|l = & OF
course, it is not necessary that |7 = Exe (¢ even does not need to be in the
spectoum of [T7). Let us consider a more explicit example of a 3 =< 3 diagonal
matrix T = diag[l,r, 5] where 0 < s < v < 1. Henee T' = [T, ||T]| = 1,

and m(T) = 5. For everv £ € (5,1), let 2, = ( ':ﬁ:f,l}, 1/:—“;) Then

[|ze]] = 1, ||Tae|| = ¢ bt Ty # try. Note that even in the case § = v the
vector o, is not an cigenvector of T at r.

It follows from Lemma 2.2 that in the definition (2.2) sequences of norm-
ing vectors of T can be replaced by sequences of approximate elgenvectors of
T at ||T. Since each number in o{|T)) is an approximate cigenvalue of |77
we extend the definition (2.2) as follows,

Definition 2.4, Lel T © E[#“j amnd v © r.r{|_f|} The numerical range uf
5 ¢ BL#) relalive to T al v is
WH(S) = {A € C; 3(x), © F: lim ||T)z, — rnl] = 0
EIE I ]
and lim {8z, x.) = A}

T—kD

Note that it follows from the definition that WE{5) = Irir’IT”{S]l: for a
slightly more general assertion see Proposition 2.7 (ii).

(2.3)

o



Lemma 2.5. Let T € B(#) and v € o(|T]). Then WE(S) is 2 non-emply
closed subsel of W8] for cvery § € B(#).

Proaf. Let § € B(.3) be an arbitrary operator, For every sequenee (x, )% | C
e ol approximate eigenvectors of [T ab v, the sequence [{(Se,, 500> s
hounded which means that there exists a subsequence ()72, such that
(1Sx,, .20, 55, converges Lo a mumber AL IL is obwvions that (x, 177, is a se-
quence of approximate eigenvectors of [T at » which means that A € WS,
e, WELS) is a non-empty set. The inclusion WE(S) © W(S) is trivial.
Assume that A € WE(S) and that (Az)p2, © Wr(5) is a sequence which
converges to A Without loss of generality we may assume that [A = Ay| <

f. For each & € K, lot {J'Ef'-lzlu_l C e beoa h-li"l'lllZIl{II ol approximate
cigenvectors of [T at r such that Ay = ]1|:|1 {‘3:,1 I ]} It is elear that for

cach & there exists an index ny, such leL

1 1
71l — raldll < o and | — (Sal) )] <

Henee [ ]':Ijr 1 = a sequence of approximate eigenvectors of [T at r such
that 5
|A = (S SN <A = Ael + | e — (Seb 2l < 2 T

We conclude that A € WE(5). O

One of the basic and probably the most important property of the or-
dinary mumerical range is its convexity, Modilving the proof of [6, Lemima
9.13] (see also [12, 14]) we are able to show that the relative numerical ranges
are convex sels, as well

Theorem 2.6. Lei T € B(#) and r € o(|T]). Then WL(5) is a conver sel
ﬁ:r' EUETY Le E{H‘ﬂ}

Proof. Without loss of generality we may assome that ||S)| = |7 = 1. Note
Lhat it follows [rom this that 0 < ¢ <0 1. We have to prove that [or arbilrary
Ao WE(S) the line segment [A, p] is a subset of WE(S), If A = ju, then
there is nothing to prove, Assume therefore that A &£ g, By the definition,
Lhere exist sequences of approximating eigenvectors ()™ ()5, © P
of [T at r, Le.,

L |||T)en — rag|| =10 and Hlif[ﬁln T | = rom|| = 0, (2.4)

EIE Js u]



such that

lim {8y, 2,0 = A and L { Sy, ie) = p- (2.5)

o0 T~

If we replace (@q )02 amd (ga )52 by their subsequences, then {2.5) still hold,
however [2.4) can be replaced by

T — rzall =2 and [T —rmll <1 (¥neM). (26)

Thus, it is assumed now on that (x, )72, and (3, )7, satisfy conditions {2.5)
and [2.6).
Denote A, = (Sx,, @) and g, = (Sy,, 4,0, Since A & poand lim A, = A,
RO s u]
lim ja, = g it is obvious that there exists an index ng such that |, — Ay =
EI T u]
%Lu. ~ Al Tor all & > ng. We may assume that iy = 1. On the other hand,

note that Ay, gy, are numbers in W) which gives |, — Ay < |pa] + A =
2|5 = 2. Similarly, |u — A] < 2.

For each n € M, let ¢, = I—Eﬁ;’—l if {r,,1v.) # 0 and ¢, = 0 otherwise,

Denote v, = €40, — Ty Then
to = {5 (€nlin )y nlin) = {S(Tn + 00 )y T+ 00} = Ay (52,0, )+ (Sthy, T +0),
and therelore
|tte — Aa| = [{5Ta, vad + {80, Ta + 00} = (ST, va)| + | {500, eatin}| < 2||ea]).
Sinee
1‘-‘}"%"2 - 1—%1:;.,,9'“—;.5,,,, Enlin=2n) = 1—51[2—2 Re({xw, eattn))) = |{Z0, 1}
we have

s gl | = 1= Gllonll® = 1= Glan = Anl® = 1= gglp = AF < 1
for every i € B, It follows from

[T Tal* = vt = (1T + )| [T ] — |
< 2| [ |TPall I 5all | < WITP — r21)ma]
= 20 [T+ I T | — v < 5



Lhuat

] =TT | = v + | T T, P — 20% | T |* < 0+ 0"+ 3 — 20| Ty |
< 20| Tz | + ) | Tl = 7] + 3 < 4] | 7|2y — ry| + 2 < B,

i —

Similarly, ||(r3] — T*T )y, ||* = ﬁ
Let \{#w, 1} be the subspace of # which is spanned by &, and .. If
ty © W {Tn, 4n } 15 A unit vector and w, = apx, o+ by, where o, by, € C) then

1= [l = {aarn + butin, @nTa + budin) = |@al* + [bal® + 2 Re{anbe(Fa, 4a))
= Jan[* 4 [bul* — 2letn | lbn[{20, ) |
= [+ [Baf? — 2lag||ba(1 — L]~ A])
= i — A{lan [+ [Bal®) + (1 — Elee — A | — a2
= il = M(aal* + [Ba]).

It follows that |a,|® + |b,)* < 32/|p — Al In the following we use first the
Lriangle inequality and after the Canchy-Schwarlz ineguality:

(2T — T | < |r1ﬁ.|||{r?I —T"Txa| + |f1ﬁ|||[f‘gf — 1T |
< a4 BB (P — Tz ||* + 2] — T T )yl ?
44/2 4 8 162 1

Lt = —.
Vig=Al¥n n u—A vn

Henee
Izt~ [Tl = W+ 210 < ) |
< e+ TG = T Y|
16V T 1
B Vi — Al W1

which gives lim |[ru, — [T, | =0, that is, (2, )%, is a sequence of approx-
LB e ]

imate cigenvectors of [T at r.

Let i = A+ (1—#)p for some ¢ € [0,1], Then n, = A, +{1— ), (r € H)
i a sequence which converges Lo 5. Let P, € BU#) be the orthogonal pro-
jection onto ., .} along Wz, ye b Denote by €, the compression of S
Lo \{En, ]}, e, Qn = I’"le,_m"}. Then Ay = (Stg, #n} = (QQnn, a) €
W2, ) and, similarly, p, © W(E2,). Because of the convexity of W({J,) one

B



has 1, € W, which means that there is a unit vector w, € Yz, )
such that {Swu,, ) = (o, w,) = 5. By the previous paragraph, (w, )=

ETE |

5 a sequence of approximate eigenvectors of [T at r. We conclude that

1= lim n, = lm {Su,,u,) € Wi{5). O
n—oo Wb

Now we list a fow more properties of the relative numerical ranges.

Proposition 2.7, Let T € B(#) and v € o{|T]).

(il For every 5 € B(#°), ome has W3(57) = {I: A e WS} and
HfT{rl'? | _."'H:I rﬂriT[":u:I F 8, where o, 8 € '1: are arbilraryg.

fit) Assume that v € C is a non-zero number and V € B(#°) i5 an
isometry, Then 'Iri“',.r'{,l}{ﬁ-'} = WL8) holds for every 5 € B(.#),

(i) If [ s o conlinuwons real-valued function on of|T]), then WE(S) C

1'r.If{l[';'"il!ll:“"zl Jor every § € B(#). Morcover, if [ is injective and f(t) =0 for

all 1 € a(|T)), then WE(S) = %_;rll:l}l.l:lli‘ajl Jor every 85 € B.#).

Proaf. (i) is obvious. For (ii) observe that (z,)2%, © % iz a sequence of
approximate eigenvectors of [T at v if and only il it is a sequence of approx-
imate cigenvectors of [oVT] = |af|T| at |o|r. To prove (iii), assome that
A€ WHS) and let (r,) © %% be a sequence of a]hprm:iuml.t elgenvectons
of [T at r such that A = ]1m {S Trw, 20y, Since f i continnous one has

Jim ([ F{[T|)zn — fir)ea|l = 0 and therefore Tim ([ FOT]) | — [F{r)|a]l = 0.

Henee {x,) © %% is a sequence of 4-1p|1-r[:l.tu:|u-1Lt eigenvectors of |f{|T])| at
|f{r)] anmd therefore A € ]ri"ffl[j':.:::lliﬁ':l. If f is injective and [ = 0 [or all
t e a|T]), then it is a bijection from of|T]) to o f(|T])) and its inverse
el [T |}] —+ ([T} is continmons, By the previeus part of the proof,

wi(s) = w/ e (8) 2wl (8) for every S € B#). O

Proposition 2.8, Let T € B{.#) and v € o(|T)). If U € B{.#) is a unilary
aperator, then Wo (I SU) = Wi(S) for every 5 € B(#°), Moreover, of U
el |I| commaule, then Wi I:f e ":uf,l':I Hr"r{ 5).

Proaf. Note liest that |TU | = (07| T which gives |[TU| = LT\ as |T'U|
i5 the unigue positive square root of =TT, Hence o(|T]) = o(|T07).
Let ()%, © %% be a sequence of approximate eigenvectors of |T] at

v such that A = ]im {Sr“. Fot. Then (Pz, ), © Fp is a sequence of

approximate cigenvec 1.-Ul'h of [T at v such that Lm (U SUU 5, U} = A
P



This proves Lhe inclusion WR(S) © W (U7SU). The opposite inclusion
[ollows Trom this one by replacing T with TU and O with D% I |7 and O
commute, then [TU| = UF|T |7 = |T| and therefore WE(S) = Wq,, (I=50) =
w}Err.q[{-'"SL":' = "'T.II:J'I'HL-’J = WL 5. O

Corollary 2.9, Let T € BL#) be an inverbible operator with the polar de-
composilion T = U|T| and let v € a{|T]). Then WE(S) = WRITSLT) for
every 5 € B,

Proof. Since T is invertible U is unitary. It follows from |T7* = (07|T|0)?
that [T*] = U[TIU*. Hence Wi (S) = Wi (S) = Wi (5) = Wi (S),
where the last equality holds beeanse of Proposition 2.7 (ii). Now, by Propo-

sition 2.8, we conclade that wiFTIf-"[S] = “’ihl’” *5U) = W (L 507). N

Remark 2.10. In general the relative numerical ranges are not invariant
under unitary equivalence, Le, WS and WL SU) can be different. On
the other hand, commutativity of 7 and [T which we used in Proposition
2.8 to obtain WHI*SU) = WE(S) for every § € B(.#) is nol necessary.

Consider the following example. Let T = diag(1, v, 5|, where 0 < 5 < ¢ < 1,

and let L7 = {::;: :l:[E:} Iy = (o, By, el € Fes (n € M) is a sequence of

approximating eigenvectors of T at 1, then |og,| — 1, [ 3+ 0 and [,

ATy Ty Tyg
0 az n — oo It follows, for every 3 = 3 matrix 5§ = (ail 23 -55.12_. that
TR RS AR

1}'111;{.?1:,,:::,,} = ey and 1}'u.::‘)lﬂ'::J'I'."}'n!'.-'.'.l.'p,J',,} = ayy which gives W& =

{or } = WAHUSU). On the other hand, if g, = (8., 6,,8,) € % (n € M) is
a sequence of approximating eigenvectors of T ab ) then |8, <+ 0, Je,| —» 1
and |E,] — D as n — oo, Henee IimNIZE-'yn.I.rF} = Mg AN lim (LS50, 4,0 =

Ty which gives WL(S) &£ WL SU) if 0g3 # ays.

3. Zero in the relative numerical range

It is known that the position of zero with respect to the nnmerical range
of 5 € B(.#°) gives some imformation about 5. In this section we show that
the presence of 0 in WES*T) gives lower bound [or the distance from T to
the linear space spanned by 5. The converse holds as well in the sense that,
for given 5,7 € B{#), 2ero is in WE(S™T) I T is al the maximal possible
distance to C5. Using this and related resalts we can characterize numbers
which are in W{5) Y #(T) (see Theorem 3.14).

L



Proposition 3.1. Let T € B(#) be a non-zero operalor and v € o(|T)). If
0 € WE(S™T), for § € B(.#), then dist(T,C8) = r. Hence, dist(T,C8) >
supir € of|T']); 0 € WE(ST)}

Proof. Let 5 € B(#) be an arbitrary operator such that 0 € WES™T).
Then there exists a sequence (7, )7, © #% of approximate eigenvectors of

|T| at v such that lm (ST, wq) = 00 I follows that i Re{A (ST 0w, 2,))
bl

[ e

= I for every A € C, Let now A be arbitrary but fixed, Since
T — AS)aall® — [APSxall* = 1T xall* — 2Re(A{S Tz, x,)) (¥ € N)

and lim |[Tx,||* = #, by Lemma 2.2, for any £ = 0 there exists an index n,
i B0

such that
¥ — g < ||(T = AS)xp||* = AP S2a]l* <+ + 2 (¥a > n,).

It follows that v* < ¢2 4 |A2|Sx, ) < (T = A8, 4+ ¢ < |7 = AS|* + ¢
and we may conclode that » < [T — AS|. Sinee A is an arbitrary number
Lher assertion [ollows. O

Remark 3.2, II'r < [T, in Proposition 3.1, then the ineqguality dist(T, CS)
= v can be strict, For instance, if v, ry € o{|T)) are such that vy < vy and
0 € WE(ST) (i = 1,2), then dist{T.C5) = ry. For an explicit example
consider again the 3 x 3 matrix 7' = diag[l,r, 8] where 0 < 5 < ¢ < 1.
Let 8 = diag[D, 0,1]. It is easily seen that ¢ = {1,0,0) is an eigenvector
of T at the eigenvalue 1 (which is the norm of T') and ee = (0, 1,0} 15 an
cigenvector of T at v, Sinee §*Te; = 0 (i = 1,2) we have 0 € WE(S™T') aml
0 e WE(S*T). It follows that dist(T,C8) =1 = r,

For r = ||T'|| Proposition 3.1 implies dist(T,C5) = |7 whenever 01
WV (ST hecause the inequality dist(T, CS) < |7 always holds. Actually
it can be proved that conditions dist(T, CS) = ||T]| and 0 € lrir'TIlTl (5T are
equivalent, Bhatia and Semrl formulated this as a result about Birkhotf-
James orthogonality between matrices and operators, see [2, Theorem 1.1,

Remark 3.1]. However we will modily the prool of [6, Lemma 9.14] (see also
(12, 14]) and prove the following theorem,

Theorem 3.3, Lel 5,7 € B(.#) be arbitrary. Then ||T)| = dist(T,C85) &
and ondy if ) € Hr’TILTI{H‘T:I.
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Progf. Note that the asertion trivially bolds for 7 = 0. Assume there-
[ore that T 3 00 We have already observed that one implication Tollows
from Proposition 3.1, To prove the opposite implication, suppose that 0 &
WA iser). Sinee W aseT) = oWV S*1) and |7 = dist(T,CS) if
and only if ||T|| = dist{T', C{aS5])) for any « £ 0, we can assume that || 5] = 1.
Further, becanse of the convexity of Wijl.lr'{S"J"} we may replace T by its
sealar multiple (il necessary) o gel Ih:l{lﬂr’a}lﬂ{.‘?‘?'}l} = 1. However, sinee
lrif'.JI.I.TI (577 C W{ST) iL is still possible that there are numbers in W{5*T)
with real part smaller than 1. Let # = {z € #g; Re({(5*Te,x)) < 3}
and let p = supd||T2]; = € &}, I is obwious that p < |7, More-
over, one actually has p < |7, Indeed, if o = ||T]], then there wonld
exist a sequence ()™ © L# such that “lilri”:f}:,t" = |7 Sinee the

sequence of mumbers ({5 e, 24 )07 is bounded it has a convergent subse-
quence, say 7 = lim ($*T'r, . r, ). Becawse of lim ||[Te, || = |77 one has
k—too k—+oo

ME Wil.l-T'[E-"T]l and therefore Rein) = 1. However, on the other hand, it
should b also Re(y) < ls Henee p o< ||T7). Let = |:|1'L|:|l|:."-!, %I{"J’” 1
iw obwvions that 0 < g < 1, Congider T — p5, If 2 € &, then

(T~ pS)ell < ITel| + pll Sl < p+ FUTN - p) < T (3.2)
For & € %% \o# . one has Re({5*Te, 2)) > % and therefore

T — uS)a|? = Tl + || Sz||* — 2 Re({S™ Tz, x}) < ||T* — pil — p).

(3.2)
It follows from (3.1) and (3.2) that |T — S| < |7}, ie., dist{T, C5) <
I17°[l- O

Corollary 3.4. Let V€ BLA) be an somefry and 5 € B.#) be an or-
Fitrary cperator.  Then dist(V,C85) = 1 if and only if 0 € W(V*5). In
particwlar, dist(f, CS5) = 1 of and ondy if 0 € W(5).

Proof. Let T =V oin Theorem 3.3, Since WHE™V) = W(5*V) and since
0 e WSV if and only if 0 £ W{1"*5) the assertion follows, O

Corollary 3.5. Lel V € BL.#) be an isomeiry and PP BL.#) be an invert-
ible positive operator, Then dist(V, CV P) < 1.

Progf. SBinee 1 @ a(f) = W) = W{V*(VF)) the assertion follows, by
Corollary 3.4. |
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It is well known that the set ﬁ_' ol all invertible operators in B{.#)
containg the open ball of radios IIT'_I about cach A © B ', In particular,
the open unit ball about a unitary operator is contained in B'. Sinee a
pop-ero sealar multiple of an invertible operator s invertible, as well, it
follows from next corollary that B! is determined by the nnion of unit balls
centered al unitary operators in the sense that 5 € B{#) is invertible i and
only if there exists a unitary operator {7 and a scalar multiple of 5 which is
contained in the open amt ball abwt 07,

Corollary 3.6. An operafor 8§ € B(#°) is non-invertible if and ondy if
dist(ILCS) = 1 Jor every unilary operator 1.

Proaf, By [7, Proposition 3.3], 5 € B{##) is not invertible if and only if 0 €
W (L&) for every unitary operator {7, But this 18 equivalent, by Corollary
34, to dist(I7, C5) = 1 for any unitary operator 17, |

Corollary 3.7. I[f S B Y, then there ensiz a unitary operator U £ B{3#°)
and o (non-zero) number o suek that || = aS87Y| < 1. In particalor, if

[ — 5| = 1, then there exists oo € ©Y {0} such that |[I — a8 Y| < 1.

Proof. Since 5 is invertible, by |’r'= Proposition 3.3], there exists a unitary
operator U7 such that 0 € W{U*S). By [5, Theorem 3.6], 0 € W{5 ).
Since the numerical ranges are invariant under unitary equivalences one has
0 g H’I:L ). Henee, by Corollary 3.4, dist{I7*,C5 ') < 1, Le, there
exists o # 0 such that [/ — a5 < 1. For the second part observe that
[[f = & = 1 gives invertibility of 5. |

Corollary 3.8. If T' € B(.#) 15 invertible, then there exists o number A such
thet |T* = ATV < L.

Proof. Sinee 0 l#';lTII[T"lT] there exists a number A such that |7
AT = T, that is, [|T* — AT Y < ||77). O

The lollowing corollary slightly extends [15, Theorem 1.

Corollary 3.9. Lel 5,7 € B(.#") be arbilrary. Then 0 € H"ajl-l-ﬂl{.‘?"!“} if el
andy if |A||[T]| < || 5—=AT| for all comples numbers A, In parficular, of T =V,
where Vs an isometry, hen 0 W{V*S) if and only of |A] < |5 — AV]| for
all A € C.
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Proof. 100 ¢ H"a]I-I-TI{S'T}, then dist{T, C5) < |7, by Theorem 3.3. Henee
there exists (A non-zero) o € C such that [T — a5 < ||T)]. It follows that
|5 if” “ }ﬂi"'{" On the other hand, if there exists A © C such that
|5 — AT < [ANT|, then |77 — 35| < ||T']| which gives dist(T,CS) < |7
and therelore, by Theorem 3.3, 0 & Wl 5*7°). For the last assertion observe
that e W15} if and only if 0 W{[5*V), O

Corollary 3.10. [fT € B(#) is such that (1 15 not in the convex hull of the
spectrum o T), then there exists an mmverlible posilive operalor P such thatl
dist(T,CP) < [|T)].

Proof, If 0 is not in the convex hull of (T, then, by [4], there exists an
invertible pusitive operator P such that 0 @ W(PT), Sinee Wr(PT) C
W PT) we conclude that dist (T, CF) < || T7]. O

Let 2 be a pormesd space. Recall that @ € 2 is said to be orthogonal
to iy € # [(in the Birkhoff-James sense) if |x — Ay|| = ||| for every scalar
Ao M0 is orthogonal o g, then we write © Ly g, It is well-known thal Lhis
relation is not symmetric in general.

Corollary 3.11. Lel P € B(#) e a positive operalor and [ o[ FP) —
[0, oc) be a condinnons funetion such that || [ = M| P)). IF £ Le J17).
then f(P) Lo P,

Proof, If P Ly fIF), then |[P — Af(P)) = ||P| for H-l!: A € C which means
that dist(P,Cf(P)) = ||P||. By Theorem 3.3, 0 € WL'(f(P)P) and there-
fore, by Proposition 2.7 (iii), 0 € W/ W i g(P)P). Sinee P and f{P) com-

fiF}
mute and f(||Pl|) = | F(P)] we have 0 € WP F(P)). Now we use
Theorem 3.3 again and conclude that f(1P7) Lg . N

Remark 3.12. A bounded linear operator T on & normed space 35 55 said
to have Bhatia-Semrl property if for any bounded linear operator A on 2
it follows from T Lg A that there exists a porming vector @ of T, Le., a unit
vector @ € & for which ||Tz|| = ||T], such that T# Ly Az. See [13] and
reference Lherein for details aboul this property. Theorem 3.3 savs that on
a separable complex Hilbert space # every T € B(3#) has Bhatia-Semrl
property.  Bendles, Ferndndes and Soriane have proved in [1] that a Goile
dimensional real normed space i an inner prodoct apace if and only if every
linear map on it has Bhatia-Semrl property. It would be interesting Lo know
il their result holds for infine-dimensional (complex) normed spaces.

14



By [3, Theorem 1 (ii)], the minimum modolus (7)) of an operator T s
positive il and only if 7" is left invertible, which means that there exists an
operator L€ B(A#7) such that LT = [, In this case, m{T") = ﬁ If 71 is right
invertible, then T is left invertible and therefore m(T™) = 0. In particalar,
T is an invertible operator i and only i m{T) = 0 and (7)) > 0; in Lhis
case m(1') = m(1") = 73 = 0, see [3, Theorem 1],

Corollary 3.13. Let T £ B(##) be an inverfible operator and 5 € B(.#7), If
0 e WS T), thenm(T1) = supfm((T—A5)" ") Ae C: T-AS e B},

Progf. Let A € T be such that T — AS is invertible. By Theorem 3.3, ||[T7 —
AS| = |7l which can be rewritten as m{(T — AS) '} < m(T '), The

asserlion follows. O

We close the paper with a result which gives a characterization of W(5)%
(5] and extends [11, Theorem] [rom matrices 1o bounded linear operators.

Theorem 3.14. Let 5 € B#°), For A€ T a(5), the following asserfions
are equivalend:

(i) A e WS\ o(5);
(it) inf |1 — p(S — M) 1=1;

(i) it [[(S ~ A1) (S — ph)| = 1.

Proof. (i)==(ii}). Assume that there exists g € C such that ||[F — plS —
MY = 1. Of course, g # 0. By Corellary 3.7, there exists a # 0 such that
[|f —oepe (S — Al || < 1, e, dist(f, (5 — Al)) < 1. 1t follows, by Corollary
4.4, that 0& W5 — Al) and therefore A & W(.5).

(il)=(iii). Assume that (5 - M) YHES — pl)|| < 1 for some ¢ € C.
Then g # A and since (§ — A)YS — ) =1 — (pp — A5 — A one has
[ = (= ANS = A7 < L

(iii)=+(i). Suppose that A € W(5). Then 0 € W5 — AJ) and, by Corol-
lary 3.9, there exists # € © such that |8] = ||(5 — A} — 21, This gives
[|lf — J—.'j[E-' — Al = 1. By Corollary 3.7, there exists & € C such that
[|[f — oS — ALY Y| = 1. Tt follows, for g = A + o3, that ||(S — AL Y8 -
ph)|| = |4 = af(s =AY < L. O
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