Skip navigation
Logo
User training | Reference and search service

Library catalog

Retrievo
EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/9114
acessibilidade
Title: Entropy: a new measure of stock market volatility?
Authors: Bentes, S. R.
Menezes, R.
Issue Date: 2012
Publisher: IOP Publishing Ltd
Abstract: When uncertainty dominates understanding stock market volatility is vital. There are a number of reasons for that. On one hand, substantial changes in volatility of financial market returns are capable of having significant negative effects on risk averse investors. In addition, such changes can also impact on consumption patterns, corporate capital investment decisions and macroeconomic variables. Arguably, volatility is one of the most important concepts in the whole finance theory. In the traditional approach this phenomenon has been addressed based on the concept of standard-deviation (or variance) from which all the famous ARCH type models - Autoregressive Conditional Heteroskedasticity Models- depart. In this context, volatility is often used to describe dispersion from an expected value, price or model. The variability of traded prices from their sample mean is only an example. Although as a measure of uncertainty and risk standard-deviation is very popular since it is simple and easy to calculate it has long been recognized that it is not fully satisfactory. The main reason for that lies in the fact that it is severely affected by extreme values. This may suggest that this is not a closed issue. Bearing on the above we might conclude that many other questions might arise while addressing this subject. One of outstanding importance, from which more sophisticated analysis can be carried out, is how to evaluate volatility, after all? If the standard-deviation has some drawbacks shall we still rely on it? Shall we look for an alternative measure? In searching for this shall we consider the insight of other domains of knowledge? In this paper we specifically address if the concept of entropy, originally developed in physics by Clausius in the XIX century, which can constitute an effective alternative. Basically, what we try to understand is, which are the potentialities of entropy compared to the standard deviation. But why entropy? The answer lies on the fact that there is already some research on the domain of Econophysics, which points out that as a measure of disorder, distance from equilibrium or even ignorance, entropy might present some advantages. However another question arises: since there is several measures of entropy which one since there are several measures of entropy, which one shall be used? As a starting point we discuss the potentialities of Shannon entropy and Tsallis entropy. The main difference between them is that both Renyi and Tsallis are adequate for anomalous systems while Shannon has revealed optimal for equilibrium systems.
Description: WOS:000312545800033 (Nº de Acesso Web of Science)
Peer reviewed: Sim
URI: https://ciencia.iscte-iul.pt/public/pub/id/22760
http://hdl.handle.net/10071/9114
ISSN: 1742-6588
Publisher version: The definitive version is available at: http://dx.doi.org/10.1088/1742-6596/394/1/012033
Appears in Collections:BRU-RI - Artigo em revista científica internacional com arbitragem científica

Files in This Item:
acessibilidade
File Description SizeFormat 
publisher_version_1742_6596_394_1_012033.pdf412.94 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.