Skip navigation
User training | Reference and search service

Library catalog

Content aggregators
Please use this identifier to cite or link to this item:

Title: Clustering financial time series: new insights from an extended hidden Markov model
Authors: Dias, J. G.
Vermunt, J. K.
Ramos, S.
Keywords: Data mining
Hidden Markov model
Stock indexes
Latent class model
Regime-switching model
Issue Date: 2015
Publisher: Elsevier
Abstract: In recent years, large amounts of financial data have become available for analysis. We propose exploring returns from 21 European stock markets by model-based clustering of regime switching models. These econometric models identify clusters of time series with similar dynamic patterns and moreover allow relaxing assumptions of existing approaches, such as the assumption of conditional Gaussian returns. The proposed model handles simultaneously the heterogeneity across stock markets and over time, i.e., time-constant and time-varying discrete latent variables capture unobserved heterogeneity between and within stock markets, respectively. The results show a clear distinction between two groups of stock markets, each one characterized by different regime switching dynamics that correspond to different expected return-risk patterns. We identify three regimes: the so-called bull and bear regimes, as well as a stable regime with returns close to 0, which turns out to be the most frequently occurring regime. This is consistent with stylized facts in financial econometrics.
Description: WOS:000351981200015 (Nº de Acesso Web of Science)
Peer reviewed: Sim
ISSN: 0377-2217
Publisher version: The definitive version is available at:
Appears in Collections:BRU-RI - Artigo em revista científica internacional com arbitragem científica

Files in This Item:
File Description SizeFormat 
post_print_dias2011.pdf652.99 kBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.