Skip navigation
Logo
User training | Reference and search service

Library catalog

Retrievo
EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/8803
acessibilidade
Title: Reading the news through its structure: new hybrid connectivity based approaches
Authors: Rodrigues, David Manuel de Sousa
Orientador: Louçã, Jorge
Keywords: Adaptive networks
Q-analysis
Community detection
Swarm intelligence
Hamiltonian path
Travelling salesman problem
Ant colony optimisation
Redes adaptativas
Detecção de comunidades
Caminhos hamiltonianos
Problema do caixeiro viajante
Optimização por colónias de formigas
Issue Date: 2014
Citation: RODRIGUES, David Manuel de Sousa - Reading the news through its structure: new hybrid connectivity based approaches [Em linha]. Lisboa: ISCTE-IUL, 2014. Tese de doutoramento. [Consult. Dia Mês Ano] Disponível em www:<http://hdl.handle.net/10071/8803>.
Abstract: In this thesis a solution for the problem of identifying the structure of news published by online newspapers is presented. This problem requires new approaches and algorithms that are capable of dealing with the massive number of online publications in existence (and that will grow in the future). The fact that news documents present a high degree of interconnection makes this an interesting and hard problem to solve. The identification of the structure of the news is accomplished both by descriptive methods that expose the dimensionality of the relations between different news, and by clustering the news into topic groups. To achieve this analysis this integrated whole was studied using different perspectives and approaches. In the identification of news clusters and structure, and after a preparatory data collection phase, where several online newspapers from different parts of the globe were collected, two newspapers were chosen in particular: the Portuguese daily newspaper Público and the British newspaper The Guardian. In the first case, it was shown how information theory (namely variation of information) combined with adaptive networks was able to identify topic clusters in the news published by the Portuguese online newspaper Público. In the second case, the structure of news published by the British newspaper The Guardian is revealed through the construction of time series of news clustered by a kmeans process. After this approach an unsupervised algorithm, that filters out irrelevant news published online by taking into consideration the connectivity of the news labels entered by the journalists, was developed. This novel hybrid technique is based on Qanalysis for the construction of the filtered network followed by a clustering technique to identify the topical clusters. Presently this work uses a modularity optimisation clustering technique but this step is general enough that other hybrid approaches can be used without losing generality. A novel second order swarm intelligence algorithm based on Ant Colony Systems was developed for the travelling salesman problem that is consistently better than the traditional benchmarks. This algorithm is used to construct Hamiltonian paths over the news published using the eccentricity of the different documents as a measure of distance. This approach allows for an easy navigation between published stories that is dependent on the connectivity of the underlying structure. The results presented in this work show the importance of taking topic detection in large corpora as a multitude of relations and connectivities that are not in a static state. They also influence the way of looking at multi-dimensional ensembles, by showing that the inclusion of the high dimension connectivities gives better results to solving a particular problem as was the case in the clustering problem of the news published online.
Neste trabalho resolvemos o problema da identificação da estrutura das notícias publicadas em linha por jornais e agências noticiosas. Este problema requer novas abordagens e algoritmos que sejam capazes de lidar com o número crescente de publicações em linha (e que se espera continuam a crescer no futuro). Este facto, juntamente com o elevado grau de interconexão que as notícias apresentam tornam este problema num problema interessante e de difícil resolução. A identificação da estrutura do sistema de notícias foi conseguido quer através da utilização de métodos descritivos que expõem a dimensão das relações existentes entre as diferentes notícias, quer através de algoritmos de agrupamento das mesmas em tópicos. Para atingir este objetivo foi necessário proceder a ao estudo deste sistema complexo sob diferentes perspectivas e abordagens. Após uma fase preparatória do corpo de dados, onde foram recolhidos diversos jornais publicados online optou-se por dois jornais em particular: O Público e o The Guardian. A escolha de jornais em línguas diferentes deve-se à vontade de encontrar estratégias de análise que sejam independentes do conhecimento prévio que se tem sobre estes sistemas. Numa primeira análise é empregada uma abordagem baseada em redes adaptativas e teoria de informação (nomeadamente variação de informação) para identificar tópicos noticiosos que são publicados no jornal português Público. Numa segunda abordagem analisamos a estrutura das notícias publicadas pelo jornal Britânico The Guardian através da construção de séries temporais de notícias. Estas foram seguidamente agrupadas através de um processo de k-means. Para além disso desenvolveuse um algoritmo que permite filtrar de forma não supervisionada notícias irrelevantes que apresentam baixa conectividade às restantes notícias através da utilização de Q-analysis seguida de um processo de clustering. Presentemente este método utiliza otimização de modularidade, mas a técnica é suficientemente geral para que outras abordagens híbridas possam ser utilizadas sem perda de generalidade do método. Desenvolveu-se ainda um novo algoritmo baseado em sistemas de colónias de formigas para solução do problema do caixeiro viajante que consistentemente apresenta resultados melhores que os tradicionais bancos de testes. Este algoritmo foi aplicado na construção de caminhos Hamiltonianos das notícias publicadas utilizando a excentricidade obtida a partir da conectividade do sistema estudado como medida da distância entre notícias. Esta abordagem permitiu construir um sistema de navegação entre as notícias publicadas que é dependente da conectividade observada na estrutura de notícias encontrada. Os resultados apresentados neste trabalho mostram a importância de analisar sistemas complexos na sua multitude de relações e conectividades que não são estáticas e que influenciam a forma como tradicionalmente se olha para sistema multi-dimensionais. Mostra-se que a inclusão desta dimensões extra produzem melhores resultados na resolução do problema de identificar a estrutura subjacente a este problema da publicação de notícias em linha.
Description: Degree of Doctor of Philosophy in the field of Complexity Sciences
Peer reviewed: Sim
URI: http://hdl.handle.net/10071/8803
Thesis identifier: 101372183
ISBN: 978-989-732-633-2
Appears in Collections:T&D-TD - Teses de doutoramento

Files in This Item:
acessibilidade
File Description SizeFormat 
rodrigues-dms-phd-thesis.pdf3.48 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.