Skip navigation
Logo
User training | Reference and search service

Library catalog

Retrievo
EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/8264
acessibilidade
Title: Hierarchical evolution of robotic controllers for complex tasks
Authors: Duarte, Miguel António Frade
Orientador: Christensen, Anders Lyhne
Oliveira, Sancho Moura
Keywords: Robótica evolucionária
Redes neuronais
Hierarquia
Controladores robóticos
Evolutionary robotics
Artificial neural networks
Hierarchy
Robotic controllers
Issue Date: 2012
Citation: DUARTE, Miguel António Frade - Hierarchical evolution of robotic controllers for complex tasks [Em linha]. Lisboa: ISCTE, 2012. Dissertação de mestrado. [Consult. Dia Mês Ano] Disponível em www:<http://hdl.handle.net/10071/8264>.
Abstract: A robótica evolucionária é uma metodologia que permite que robôs aprendam a efetuar uma tarefa através da afinação automática dos seus “cérebros” (controladores). Apesar do processo evolutivo ser das formas de aprendizagem mais radicais e abertas, a sua aplicação a tarefas de maior complexidade comportamental não é fácil. Visto que os controladores são habitualmente evoluídos através de simulação computacional, é incontornável que existam diferenças entre os sensores e atuadores reais e as suas versões simuladas. Estas diferenças impedem que os controladores evoluídos alcancem um desempenho em robôs reais equivalente ao da simulação. Nesta dissertação propomos uma abordagem para ultrapassar tanto o problema da complexidade comportamental como o problema da transferência para a realidade. Mostramos como um controlador pode ser evoluído para uma tarefa complexa através da evolução hierárquica de comportamentos. Experimentamos também combinar técnicas evolucionárias com comportamentos pré-programados. Demonstramos a nossa abordagem numa tarefa em que um robô tem que encontrar e salvar um colega. O robô começa numa sala com obstáculos e o colega está localizado num labirinto ligado à sala. Dividimos a tarefa de salvamento em diferentes sub-tarefas, evoluímos controladores para cada sub-tarefa, e combinamos os controladores resultantes através de evoluções adicionais. Testamos os controladores em simulação e comparamos o desempenho num robô real. O controlador alcançou uma taxa de sucesso superior a 90% tanto na simulação como na realidade. As contribuições principais do nosso estudo são a introdução de uma metodologia inovadora para a evolução de controladores para tarefas complexas, bem como a sua demonstração num robô real.
Evolutionary robotics is a methodology that allows for robots to learn how perform a task by automatically fine-tuning their “brain” (controller). Evolution is one of the most radical and open-ended forms of learning, but it has proven difficult for tasks where complex behavior is necessary (know as the bootstrapping problem). Controllers are usually evolved through computer simulation, and differences between real sensors and actuators and their simulated implementations are unavoidable. These differences prevent evolved controllers from crossing the reality gap, that is, achieving similar performance in real robotic hardware as they do in simulation. In this dissertation, we propose an approach to overcome both the bootstrapping problem and the reality gap. We demonstrate how a controller can be evolved for a complex task through hierarchical evolution of behaviors. We further experiment with combining evolutionary techniques and preprogrammed behaviors. We demonstrate our approach in a task in which a robot has to find and rescue a teammate. The robot starts in a room with obstacles and the teammate is located in a double T-maze connected to the room. We divide the rescue task into different sub-tasks, evolve controllers for each sub-task, and then combine the resulting controllers in a bottom-up fashion through additional evolutionary runs. The controller achieved a task completion rate of more than 90% both in simulation and on real robotic hardware. The main contributions of our study are the introduction of a novel methodology for evolving controllers for complex tasks, and its demonstration on real robotic hardware.
Description: Mestrado em Engenharia Informática
Peer reviewed: Sim
URI: http://hdl.handle.net/10071/8264
Appears in Collections:T&D-DM - Dissertações de mestrado

Files in This Item:
acessibilidade
File Description SizeFormat 
Miguel_Duarte_MSc_Thesis.pdf12.15 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.